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1
Preliminaries

In this chapter, we introduce some of the basic notions of set theory, and a few well known
results of the real line, including a few topological properties. Any nonstandard notation will
be introduced as needed, most notation will remain consistent with the books by Jech [8] and
Kunen [10].

The Real Line

We assume the reader has a basic introduction to modern set theory, and understands basic
notions such as the integers, N or ω, and the rational numbers Q. We will show three ways one
might proceed in defining the set of real numbers R from these basic notions. We will show in
later chapters that R is not absolute like N and Q, but can differ depending on properties of the
model of set theory used.

1.1 Dedekind Cuts

Definition. A Dedekind cut in Q is a pair (A,B) of disjoint nonempty subsets of Q such that:

1. A ∪B = Q

2. a < b for any a ∈ A and b ∈ B

3. A does not have a greatest element

We now say that R is the collection of all of the Dedekind cuts in Q. We want of course that
Q ⊆ R, and luckily for us, there is a very natural embedding. If q ∈ Q defineAq := {x ∈ Q : x < q},
and Bq := {x ∈ Q : x ≥ q}, then the pair (Aq, Bq) is a Dedekind cut in Q.

We equip R with the usual topology generated by the rational intervals, and the usual metric.

1.2 The Cantor Set

Definition. The Cantor Set, or the Cantor Space is the set 2ω := {f : “f is a map from ω to 2”}.

We equip 2ω with the following topology. Let p ∈ 2<ω (a binary sequence of finite length), then
define the set Up ⊆ 2ω by Up := {x ∈ 2ω : p ⊆ x}. Then {Up : p ∈ 2<ω} builds a base for our
topology.
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We can also equip the Cantor space with the following metric. If x, y ∈ 2ω, and x 6= y define

∆(x, y) := min{n ∈ ω : x(n) 6= y(n)}

Then define the metric on 2ω by

d(x, y) :=

{
2−∆(x,y) if x 6= y

0 if x = y

The metric topology generated by d is the same as the topology defined above. It is easy to
see that this space is completely disconnected, as the base we defined above is one of clopen
sets. We could “glue” this space together by the following method. Let a := 〈0, 1, 1, 1, 1, ...〉,
and b := 〈1, 0, 0, 0, 0, ...〉, then if x ∈ 2<ω is any finite seqence of 0’s and 1’s, we say x_a ∼ x_b
(where _ is concatenation). We claim now that this is an equivalence relation, and the quotient
space 2ω/ ∼ is homeomorphic to the closed unit interval [0, 1].

1.3 The Baire Space

Definition. The Baire Space is the set ωω := {f : “f is a map from ω to ω”}.

Similarly to the Cantor space, we equip the Baire space with the topology built by the sets
Up := {x ∈ ωω : p ⊆ x} where p ∈ ω<ω.

We can use the exact same metric as we used on the cantor space. Just extend the domain of
∆ to include sequences in ωω.

1.4 Null and Meager sets

If we are working with the Real line in the usual sense (Dedekind cuts or something similar), we
say an open interval (a, b) has length b − a. If we are working in the Cantor (or Baire) space,
and p is an element of 2<ω (or ω<ω), then we say the open set Up has length 2−dom(p).

Definition. The outer measure of a set A ⊆ R is defined by

µ∗(A) := inf

{∑
i∈ω

length(Ii) : A ⊆
⋃
i∈ω

Ii and each Ii is an open interval

}

A set B ⊆ R is Lebesgue measurable if for each A ⊆ R, µ∗(B) = µ∗(B ∩A) + µ∗(B\A). If a set
B is measurable, we write µ(B) instead of µ∗(B), and call this the Lebesgue measure of B.
A measurable set B ⊆ R is a null set if µ(B) = 0.

We won’t go any further in describing the Lebesgue measure. A complete description can be
found in chapter 11 of [11]. We will however need a few basic properties.

Lemma 1.4.1. Let B ⊆ R be a measurable set, then for each ε > 0 there is a closed set V and
an open set U such that V ⊆ B ⊆ U and µ(U\V ) < ε.

Proof. See [11].

Definition. A subset of R is a Gδ-set if it can be expressed as a countable intersection of open
sets. A set subset of R is a Fσ-set if it can be expressed as a countable union of closed sets.
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Corollary 1.4.2. If B ⊆ R is a measurable set, then there is a Fσ set F and a Gδ set G such
that F ⊆ B ⊆ G and µ(F ) = µ(B) = µ(G).

Proof. For each n ∈ ω choose a closed set Vn, and an open set Un such that Vn ⊆ B ⊆ Un and
µ(U\V ) < 1

n . Then F :=
⋃
n∈ω Vn and G :=

⋂
n∈ω Un are the desired sets.

Definition. Let X be a set equipped with a topology, then a subset A ⊆ X is called

• dense in X if for every open U ⊆ X, U ∩A 6= ∅.

• nowhere dense in X if there is a dense open set U ⊆ X such that U ∩A = ∅.

• meager in X if it can be expressed as the union of countably many nowhere dense sets.

Lemma 1.4.3. If A ⊆ X is meager, there is a Gδ set B that can be expressed as the countable
intersection of dense open sets such that A ∩B = ∅.

Proof. This follows directly from the definitions of meager and nowhere dense.

1.5 Some Universal Properties of the Real Line

We are going to want to work in several models of set theory, but want to be able to transfer
some ideas like open sets from one model to another. For example, we may talk of the rational
open interval with the code (1

2 ,
3
4), but what we really want to talk about is the interpretation

of the code, {x ∈ R : 1
2 < x ∧ x < 3

4}. We notice right away that the code is universal, as
every model of set theory contains “the same” set of rational numbers, but as we shall soon see
the interpretation may vary from model to model, because one model might have “more” real
numbers between 1

2 and 3
4 . We now extend this idea of codes to a few specific types of subsets

of R.

Definition. A set p ∈ V is a G-code and represents an open set of RV if it is an at most
countable collection of ordered pairs of the form 〈r1, r2〉 where r1, r2 ∈ Q and r1 < r2. The
G-interpretation of p in V is given by pV :=

⋃
〈r1,r2〉∈p(r1, r2)V .

As above we define, (r1, r2)V := {x ∈ RV : r1 < x ∧ x < r2}

Corollary 1.5.1. If q ∈ V is an open subset of RV , then there is a G-code p ∈ V such that
pV = q.

Proof. Every open subset of the real line is the union of countably many open rational intervals.

Definition. A set p ∈ V is an F-code and represents a closed set of RV if it has the same form
as a G-code. The F-interpretation of p in V however is given by pV := RV \

⋃
〈r1,r2〉∈p(r1, r2).

i.e. the complement of the G-interpretation of p.

Corollary 1.5.2. If q ∈ V is a closed subset of RV , then there is an F-code p ∈ V such that
pV = q.

Proof. Every closed subset of the real line is the complement of an open subset of the real
line.

Definition. A set p ∈ V is a Gδ-code and represents a Gδ set of RV , if it is an at most countable
collection of G-codes. The Gδ-interpretation of p in V is given by pV :=

⋂
q∈p q

V . Where qV is
the G-interpretation of q in V .
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We don’t have to stop there. It is easy to see how one would define an Fσ code. We could even
define codes for Borel sets. However, for us, as we shall later see, open, closed and Gδ sets will
suffice.

Now that we have a way to code certain types of sets, it becomes interesting to ask which
properties of these sets are universal. It turns out that the diameter of certain sets does not
depend on the model we are working in. We will later be interested in the diameter of closed
sets, so we will prove it for F -codes, but it would be easy to show this for other codes as well.

Lemma 1.5.3. If p ∈ V is an F -code, then diam(pV ) depends only on p, and not on the
interpretation pV .

Proof. We can show this with a simple calculation:

diam(pV ) = sup{x− y : x, y ∈ pV }
= sup{x− y : ∀〈r, s〉 ∈ p(x ≤ r ∨ x ≥ s) ∧ (y ≤ r ∨ y ≥ s)}
= sup{x : ∀〈r, s〉 ∈ p(x ≤ r ∨ x ≥ s)} − inf{y : ∀〈r, s〉 ∈ p(y ≤ r ∨ y ≥ s)}
= sup{r : ∃s〈r, s〉 ∈ p ∧ ∀〈r′, s′〉 ∈ p(r ≤ r′ ∨ r ≥ s′)}

−inf{s : ∃r〈r, s〉 ∈ p ∧ ∀〈r′, s′〉 ∈ p(s ≤ r′ ∨ s ≥ s′)}

This term only depends on the code p, and not on the interpretation pV .

1.6 Cichoń’s Diagram

The next natural question to ask, is which properties of the real line actually do depend on the
model we are working in. For some specific examples, we will look at the 10 cardinal invariants
that make up Cichoń’s Diagram. First we define them.

Definition. A set I ⊆ P(R) is an ideal on R if the following hold:

1. If A,B ∈ I then A ∪B ∈ I

2. If A ∈ I and B ⊆ A then B ∈ I

3. If r ∈ R then {r} ∈ I

4. R /∈ I

Definition. If I is an ideal on R, then define the following cardinal characteristics:

1. add(I) = min{card(A) : A ⊆ I,
⋃
A /∈ I} is the additivity number of I.

2. cov(I) = min{card(A) : A ⊆ I,
⋃
A = R} is the covering number of I.

3. non(I) = min{card(X) : X ⊆ R, X /∈ I} is the uniformity number of I.

4. cof(I) = min{card(A) : A ⊆ I ∀B ∈ I ∃A ∈ A(B ⊆ A)} is the cofinality of I.

Definition. Let N denote the ideal of null sets, {X ⊆ R : µ(X) = 0}, and let M denote the
ideal of meager sets.
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Definition. If f, g ∈ ωω then:

f ≤∗n g ⇐⇒ ∀m > n f(m) ≤ g(m)

f ≤∗ g ⇐⇒ ∃n ∈ ω f ≤∗n g

If f ≤∗ g, we say g eventually dominates f .

Definition. The bounding number is the smallest cardinality of an unbounded family on ωω with
respect to ≤∗, defined by b := min{card(F ) : F ⊆ ωω and ∀g ∈ ωω∃f ∈ F such that f �∗ g}.

Definition. The dominating number is the smallest cardinality of a cofinal family with respect
to ≤∗, defined by d = min{card(F ) : F ⊆ ωω and ∀g ∈ ωω∃f ∈ F such that g ≤∗ f}

Definition. Cichoń’s diagram is the diagram:

cov(N ) > non(M) > cof(M) > cof(N ) > 2ℵ0

b

∧

> d

∧

ℵ1 > add(N )

∧

> add(M)

∧

> cov(M)

∧

> non(N )

∧

It is well known that arrows in the diagram represent inequalities between these invariants that
do not depend on the model. Most of these require long involved proofs, so we will omit them
here. For a full explanation see [2]. Assuming the inequalities shown hold, it is clear that if we
have the continuum hypothesis that we actually have equality everywhere. Later we will show
a model where cov(N ) and cov(M) are both ℵ2, but b is still ℵ1. For more models see 7.5 in
[3].



2
The Notion of Forcing

In 1963 Paul Cohen showed that both the axiom of choice and the continuum hypothesis are
independent from the Zermelo-Fraenkel axioms of set theory. While his results were important
in mathematics, it was his method that gave mathematicians a tool that could be used to prove
much more. Best summarized by [9]: “The extent and breadth of the expansion of set theory
henceforth dwarfed all that came before, both in terms of the numbers of people involved and the
results established.” The idea was simple: take an existing model of set theory and adjoin a new
element, much like algebraists do when adding a transcendental to a field. In doing so, Cohen
wanted to preserve the axioms of set theory, and also be careful not to add any new ordinals [6].
He decided to start with a countable transitive model, which gave insight on what a “generic”
element might look like. Since the natural numbers are absolute in any model, the simplest set
to try to add is a new subset of the them. Since the model was countable however, there exists
an ordinal α, that is countable, but does not lie in the model. Since this α is countable, it could
be encoded as a set of natural numbers. If we happen to try to adjoin this particular set, we
would also add this ordinal α. So these “generic” elements had to be chosen wisely, and this
is what the method of forcing does. We will present forcing here by using partial orders in the
ground model, and show how to use them to find the sought after “generic” element.

2.1 The Definition of Forcing

Definition. Let V be a transitive model of set theory, and (P,≤, 1) ∈ V a partially ordered set
in which 1 ∈ P is a maximal element. Then we will call P a forcing or a forcing notion, and its
elements forcing conditions. We say p is stronger than q, or p is an extension of q, if p ≤ q. We
say p is compatible with q if there exists an r that extends both p and q, and we may denote
this by p ‖ q. Otherwise p and q are called incompatible, and we may denote this by p ⊥ q.

Definition. If (P,≤) is a partially ordered set, then D ⊆ P is dense in P if for every p ∈ P there
is a q ∈ D such that q ≤ p.

Definition. A class F ⊆ P is a filter if

1. F is nonempty

2. If p ≤ q and p ∈ F then q ∈ F

3. If p, q ∈ F then there is an r ∈ F such that r ≤ p, q

A filter is P-generic over V if
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4. For all D ∈ V such that D is dense in P, D ∩ F 6= ∅

Remark. We can actually drop the requirement that the ordering is antisymmetric, and take
our forcing notions to be preorders. In any case, we can always take an appropriate quotient of
a preorder to convert it to a partial order.

From now on, unless stated otherwise, we will assume that V is a transitive model of ZFC,
P ∈ V is a forcing, and G is a P-generic filter over V .

2.2 Properties of Generic Filters

In the definition of a generic filter, we use dense sets to describe its genericity. We could however
use one of the following notions.

Definition. A set D ⊆ P is

• predense in P if for every p ∈ P, there is some q ∈ D and r ∈ P such that r extends both
q and p.

• an antichain if for all p, q ∈ A, p ⊥ q. An antichain is maximal if for all p ∈ P\A, A ∪ {p}
is not an antichain.

Lemma 2.2.1. Let G be a filter on P. Then the following are equivalent.

1. G is P-generic over V

2. G ∩D 6= ∅ for every D ∈ V that is predense in P

3. G ∩A 6= ∅ for every A ∈ V that is a maximal antichain in P

Proof. (1 =⇒ 2) If D is predense in P, it is clear that D′ := {p ∈ P : ∃q ∈ D (p ≤ q)} is
dense. Therefore if G is a generic filter, there is some p ∈ D′ ∩ G. Then by the definition of
D′, there is some q ∈ D such that p ≤ q. By the filter properties, q ∈ G, and therefore q ∈ G∩D.

(2 =⇒ 3) If A is a maximal antichain, and p ∈ P, there is some q ∈ A such that p ‖ q, (because
otherwise A ∪ {p} would be still an antichain, so A wouldn’t be maximal). Then let r extend p
and q, and notice that this shows that A is predense. Therefore 3 follows directly from 2.

(3 =⇒ 1) We show that every dense subset of P contains a maximal antichain. Let D be dense
in P, and let A be an antichain maximal with the property A ⊆ D. Suppose now that there
exists a p ∈ P\A such that A ∪ {p} is an antichain. Then since D is dense, there exists a q ∈ D
such that q ≤ p. But then A∪ {q} is an antichain and is contained in D, thus contradicting the
assumed maximality of A. It follows that 3 implies 1.

Lemma 2.2.2. If P ∈ V is a forcing, H is a filter on P, and G is a P-generic filter over V such
that G ⊆ H, then G = H.

Proof. For contradiction, assume this is not the case and let p ∈ H be such that p /∈ G. Then
define the set D := {q ∈ P : (q ≤ p) ∨ (q ⊥ p)}, and notice it is dense in P. It follows from the
genericity of G that we have some q ∈ G ∩D. Since q is an element of G but p is not, we can’t
have q ≤ p, so it must be that q ⊥ p. Remember that p ∈ H, and notice that because G ⊆ H,
q ∈ H. This of course is a contradiction though, as p ⊥ q.



2. The Notion of Forcing 9

Lemma 2.2.3. Let P ∈ V be a forcing such that for every p ∈ P there exist r, s ≤ p such that
r ⊥ s, and let G ⊆ P be a generic filter. Then G /∈ V .

Proof. We suppose for contradiction that G ∈ V . Then P\G ∈ V and we can show that it is
dense in P. To do this, let p ∈ P and find q, r ∈ P such that q, r ≤ p and q ⊥ r. It cannot
be the case that both q and r are elements of G, so either q ∈ P\G or r ∈ P\G, thus P\G is
dense. By genericity (P\G) ∩ G 6= ∅, but it is clear that this set would be empty, giving us a
contradiction.

While the above properties are important, the most important property of a generic filter is
existence. Cohen’s success of forcing came from the fact that he started with a countable
minimal model. In such a model, one can ask every question in a sequence, and in particular
find a subset of the forcing that intersects every dense subset in the ground model.

Lemma 2.2.4. If M is a countable model, with a forcing P ∈ M and p ∈ P then there is a
P-generic filter, G, over M with p ∈ G.

Proof. Start by enumerating all of the dense sets of P in M as 〈Dn : n < ω〉 (this of course is
done outside of M , as most likely this enumeration does not exist within M). By the density of
D0, choose a p0 ∈ D0 such that p0 ≤ p. Now for each n ∈ ω choose a pn+1 ∈ Dn+1 such that
pn+1 ≤ pn, and take the filter generated by {pn : n ∈ ω}. By construction this filter is P-generic
over M , and contains p as an element.

2.3 P-names and Generic Extensions

Definition. An element ḟ ∈ V is a P-name if it is a relation and for all 〈ġ, p〉 ∈ ḟ we have ġ is
a P-name and p ∈ P.

It is clear from the definition that the empty set is trivially a P-name. As we shall see below,
there are “just as many” P-names as there are elements in V .

Definition. If x ∈ V then the canonical P-name for x is defined recursively by

x̌ := {(y̌, 1) : y ∈ x}

(In particular ∅̌ = ∅.) Notice also that if x ∈ V then x̌ ∈ V as well.

Definition. If ḟ ∈ V is a P-name, then the G-interpretation of ḟ is given by

ḟG := {ġG : ∃p ∈ G(〈ġ, p〉 ∈ ḟ}

Now we can see why x̌ is called the canonical P-name of x, as with a little work it is clear that
x̌G = x. Remember though that we have shown that G is not always an element of V . Thus we
can see that the interpretation of some names may also not lie in V .

Definition. Even though the filter G may not be in V , it has a canonical name in V , namely

Ġ := {(p̌, p} : p ∈ P}

Notice that in fact ĠG = G, because if p ∈ G, then p = p̌G ∈ ĠG, and if p /∈ G, p /∈ ĠG.

Definition. If G is a P-generic filter over V , then define the P-generic extension of V by G as

V [G] := {ḟG : “ḟ ∈ V is a P-name”}
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We claim now that V [G] is a model of ZFC. For a detailed proof, please refer to Kunen [10]
chapter VII §4.

Lemma 2.3.1. If Ṽ is a transitive model of ZFC such that V ⊆ Ṽ and G ∈ Ṽ then V [G] ⊆ Ṽ .

Proof. Since G ∈ Ṽ and for each P-name ḟ ∈ V , we also have ḟ ∈ Ṽ , it is clear that ḟG ∈ Ṽ .

So one might think of V [G] as being the smallest model of ZFC such that V ⊆ V [G] and
G ∈ V [G]. We can use this idea to define what a minimal generic extension would look like.

Definition. An extension V [G] is minimal over V if given any subset of ordinals X ∈ V [G],
either X ∈ V or G ∈ V [X].

Since we are going to be working with codes for open sets, closed sets,... etc, the following
lemma will become very useful to us. We will only present the case for G-codes (open sets), but
it is clear that it can be repeated for any type of code.

Lemma 2.3.2. Let p ∈ V be a G-code for an open set pV ∈ V , then pV ⊆ pV [G].

Proof. For each x ∈ pV , there is some 〈a, b〉 ∈ p such that in V , a ≤ x ≤ b. This inequality
holds in V [G], and thus x ∈ pV [G].

2.4 The Language of Forcing

Definition. We say φ(ẋ0, ..., ẋn) is a sentence in the forcing language if φ is an ∈-formula, and
ẋ0, ..., ẋn ∈ V are P-names.

Definition. If φ(ẋ0, ..., ẋn) is a sentence in our forcing language, and p is a condition, we say p
forces φ(ẋ0, ..., ẋn) if for every P-generic filter G with p ∈ G, the statement φV [G](ẋG0 , ..., ẋ

G
n ) is

true in V [G]. We write in shorthand p  φ.

Theorem 2.4.1. (The Forcing Theorem)
If φ is a sentence of our forcing language then for every P-generic G ⊆ P over V , we have:

V [G] |= φ ⇐⇒ ∃p ∈ G (p  φ)

Proof. See theorem 3.6 in chapter VII §3 of [10].

Lemma 2.4.2. (Properties of Forcing)
If φ and ψ are sentences in the forcing language, and p and q are conditions in P then

1. If p  φ and q ≤ p then q  φ

2. No p forces φ and ¬φ

3. For every p there is a q ≤ p that decides φ, i.e. either q  φ or q  ¬φ

4. p  φ if and only if no q ≤ p forces ¬φ

5. p  φ ∧ ψ if and only if p  φ and p  ψ

6. p  ∀x (φ(x)) if and only if p  φ(ẋ) for every P-name ẋ ∈ V

7. p  φ ∨ ψ if and only if ∀q ≤ p (∃r ≤ q (r  φ or r  ψ))

8. p  ∃x (φ(x)) if and only if ∀q ≤ p (∃r ≤ q∃ẋ ∈ V (r  φ(ẋ)))

Proof. Also found in chapter VII §3 of [10].
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Some Consequences of the Forcing Theorems

Definition. A forcing P is separative if whenever p � q there is a p′ ≤ p such that p′ ⊥ q.

Lemma 2.4.3. If P is separative and p, q ∈ P then p  q̌ ∈ Ġ if and only if p ≤ q.

Proof. If p ≤ q and p ∈ G then by the second filter property, q ∈ G. It is clear that by definition
p  q̌ ∈ Ġ. Now suppose that it is not the case that p ≤ q. Since P is separative, we can find
a p′ ≤ p such that p′ ⊥ q. It is clear by the forcing properties then that p 1 q̌ ∈ Ġ, because
p′  q̌ /∈ Ġ.

Lemma 2.4.4. If ẋ ∈ V is a P-name such that 1  ẋ ⊆ V , then there is a name x̂ ∈ V such
that 1  ẋ = x̂ and if a ∈ x̂ then there is some y ∈ V and p ∈ P such that a = 〈y̌, p〉.

Proof. Define x̂ := {〈y̌, p〉 : y ∈ V ∧ p ∈ P ∧ (p  y̌ ∈ ẋ)}, then we claim that 1  ẋ = x̂. First
let G be a P-generic filter over V . Suppose that y ∈ ẋG and notice that by the forcing theorem
there is some p ∈ G such that p  y̌ ∈ ẋ, which by definition tells us that 〈y̌, p〉 ∈ x̂. Therefore
p  y̌ ∈ x̂, and in particular since p ∈ G, y = y̌G ∈ x̂G. Now suppose instead that y ∈ x̂G, and
notice again there is a p ∈ G such that p  y̌ ∈ x̂. Then there is some q ≥ p such that 〈y̌, q〉 ∈ x̂
(in particular we could show this to be true for q = p), so q  y̌ ∈ ẋ. Since p ∈ G and q ≥ p, we
have q ∈ G, so y = y̌G ∈ ẋG. Together, we get ẋG = x̂G, or because G was an arbitrary generic
filter, 1  ẋ = x̂.

Lemma 2.4.5. Suppose that A ∈ V is an antichain in P, and for each q ∈ A, ẋq ∈ V is a
P-name. Then there is a ẋ ∈ V such that q  ẋ = ẋq for each q ∈ A.

Proof. Define ẋ :=
⋃
q∈A{〈ẏ, p〉 : ẏ ∈ dom(ẋq) ∧ p ≤ q ∧ p  ẏ ∈ ẋq}. Fix a q ∈ A and assume G

is a generic filter with q ∈ G. We now show that ẋG = ẋGq .

Let y ∈ ẋG. Then there exists an r ∈ A∩G, a p ∈ G, with p ≤ r, and a name ẏ ∈ dom(ẋr) such
that 〈ẏ, p〉 ∈ ẋ, ẏG = y, and p  ẏ ∈ ẋr. Since A is an antichain, the only element of A∩G is q,
and since p ∈ G, ẏG ∈ ẋGq .

Now let y ∈ ẋG. Then there exists an p ∈ G with p ≤ q and a ẏ ∈ dom(ẋ) such that p  ẏ ∈ ẋ.
By the definition of ẋ it must be that ẏ ∈ ẋq, and p  ẏ ∈ ẋq. It is then clear that ẏG ∈ ẋGq .

Theorem 2.4.6. (The Maximality Principal)
(Assume AC holds in V) Let q ∈ P, and suppose that for some P-names, ẋ1, ..., ẋn ∈ V , we have
q  ∃x (φ(x, ẋ1, ..., ẋn). Then there is a P-name ẋ ∈ V such that q  φ(ẋ, ẋ1, ..., ẋn).

Proof. Using Zorn’s Lemma in V , find an antichain A ∈ V maximal with the properties:

1. A is an antichain in P

2. ∀p ∈ A(p ≤ q ∧ ∃ẋ ∈ V (p  φ(ẋ, ẋ1, ..., ẋ2)))

Using the axiom of choice, choose for each p ∈ A a name ẋp ∈ V such that p  φ(ẋp, ẋ1, ..., ẋ2),
and by the previous lemma, choose an ẋ ∈ V such that p  ẋ = ẋp for each p ∈ A. Assume now
that q 1 φ(ẋ, ẋ1, ..., ẋn), then there is some r ≤ q such that r  ¬φ(ẋ, ẋ1, ..., ẋn). Since r ≤ q,
r  ∃x(φ(x, ẋ1, ..., ẋn), so there is some s ≤ r and some P-name ẏ such that s  φ(ẏ, ẋ1, ..., ẋn).
Since s  ¬φ(ẋ, ẋ1, ..., ẋn), we can see that s ⊥ p for every p ∈ A, but then A∪{s} is an antichain
in V with the desired properties but A ( A ∪ {s}, contradicting the maximality of A.
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2.5 Equivalence of Forcing Notions

We are going to look at a few specific examples of forcing notions that add new real numbers to
the ground model. Sometimes two different forcing notions produce the same generic extension.
We can use this to our advantage by producing multiple forcing notions, with different combinatorial
properties, that produce the same generic extension. Some specific properties of the generic
extension might be easier to show in one variation over another. We first describe here a
sufficient condition that two forcing notions are equivalent.

Definition. Two forcing notions in a ground model V are equivalent if they generate the same
generic extensions of V .

Definition. Let P and Q be forcing notions in our ground model V , then a map f ∈ V ,
f : P→ Q is called a dense embedding if:

1. If p1 ≤ p2 then f(p1) ≤ f(p2)

2. If p1 and p2 are incompatible then so are f(p1) and f(p2)

3. f [P] is dense in Q

Theorem 2.5.1. If f : P→ Q is a dense embedding then P and Q are equivalent forcing notions.

Proof. As dense sets play an important role in genericity, we need a way to translate them from
one forcing to the other. We do this with the following two claims.

Claim. If D ∈ V is dense in P, then f [D] is dense in Q.

Proof. Let q ∈ Q, then since f [P] is dense in Q we can find a p′ ∈ P such that f(p′) ≤ q, and since
D is dense in P we can find p ∈ D such that p ≤ p′. Then f(p) ∈ f [D] and f(p) ≤ f(p′) ≤ q, so
f [D] is dense in Q.

To transfer dense sets in the other direction, we can’t just take the preimage of D because it
might not have one. To get around this problem, we take the set of everything that “would be
under” the preimage.

Claim. If D ∈ V is dense in Q, then DP := {p ∈ P : ∃q ∈ D(f(p) ≤ q)} is dense in P.

Proof. Let p ∈ P, then f(p) ∈ Q, and D is dense in Q, so find a d ∈ D such that d ≤ f(p). Now,
since f(P) is also dense in Q find a p′ ∈ P such that f(p) ≤ d. It is clear that f(p′) ≤ f(p), so
in particular they are compatible, which means by property 2. of the dense embedding, so are p
and p′. Thus we can find a p′′ ∈ P that extends both p and p′. By property 1. of the embedding,
f(p′′) ≤ f(p′) ≤ d, and thus p′′ ∈ DP, proving that it is dense in P.

Now we want to construct some maps (computable in the appropriate universes) that translate
generic filters from one forcing to the other.

First we define a map f̄ such that if G ⊆ P is a P-generic filter over V , the image f̄(G) ⊆ Q is
a Q-generic filter over V . Notice that the image of a filter might not be upwards closed, and
therefore not a filter. It turns out that the right thing to do is to take the upwards closure of
this image.

Claim. Let G ⊆ P be a P-generic filter over V , then f̄(G) := {q ∈ Q : ∃p ∈ G(f(p) ≤ q)} ⊆ Q
is a Q-generic filter over V .
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Proof. First we show that f̄(G) is a filter on Q.

1. f̄(G) is not empty

This is trivial, because G is not empty.

2. If p ≤ q and p ∈ f̄(G), then q ∈ f̄(G)

Since p ∈ f̄(G), there is some r ∈ G such that f(r) ≤ p. It is then clear that f(r) ≤ q, so
q ∈ f̄(G).

3. If p, q ∈ f̄(G) then there is an r ∈ f̄(G) such that r ≤ p, q
Let p′, q′ ∈ G such that f(p′) ≤ p and f(q′) ≤ q, then because G is a filter, there is some
r ≤ p′, q′ such that r ∈ G. We can see now that f(r) ∈ f̄(G) and f(r) ≤ p, q.

Now we will show that the filter f̄(G) is Q-generic over V .

4. Given any set D ∈ V which is dense in Q, f̄(G) ∩D 6= ∅.
Since D is dense in Q, the set DP defined in our claim above is dense in P, and thus by
the P-genericity of G, there is some p ∈ G ∩DP 6= ∅. Since p ∈ DP there is a q ∈ D such
that f(p) ≤ q, and because p ∈ G, by definition q ∈ f̄(G).

Now we show that in taking the inverse image under f of a Q-generic filter H, the result is a
P-generic filter.

Claim. Let H ⊆ Q be a Q-generic filter over V , then f−1[H] := {p ∈ P : f(p) ∈ H} ⊆ P is a
P-generic filter over V .

Proof. Again we begin by showing that the result is a filter.

1. f−1[H] is not empty

Since f [P] ∈ V is dense in Q, and H is a Q-generic filter over V , f [P] ∩ H 6= ∅. Thus if
p ∈ P such that f(p) ∈ H, it is clear p ∈ f−1[H].

2. If p ≤ q and p ∈ f−1[H], then q ∈ f−1[H]

By property 1. of f , f(p) ≤ f(q), and thus by the filter properties of H, f(q) ∈ H, so
q ∈ f−1[H].

3. If p, q ∈ f−1[H] then there is an r ∈ f−1[H] such that r ≤ p, q
Define the set Dp,q := {r ∈ P : (r ≤ p, q) ∨ (r ⊥ p) ∨ (r ⊥ q)}. This is clearly dense in
P, since if we have any s ∈ P, it is either compatible with both p and q, or incompatible
with one of them. If it is incompatible with one of them, it is already an element of Dp,q.
Otherwise it is compatible with both, so we can choose some r stronger than p, q and s,
and this is an element of Dp,q. We know that f [Dp,q] is dense in Q by the claim above, so
H ∩ f [Dp,q] 6= ∅. Let r ∈ Dp,q such that f(r) ∈ H ∩ f [Dp,q]. Since f(r) ‖ f(p), f(q), (as
they are all elements of the filter H), r must be compatible with both p and q by property
2. of the map f . By the definition of Dp,q this means that r ≤ p, q, and is thus the desired
element of f−1[H].

Now we will show that the filter f−1[H] is P-generic over V .
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4. Given any set D ∈ V which is dense in P, f−1[H] ∩D 6= ∅.
We know already that f [D] ∈ V is dense in Q, so f [D] ∩H 6= ∅. Let r ∈ D be such that
f(r) ∈ f [D] ∩H, then it is clear that r ∈ f−1[H] ∩D.

We now want to show that these operations are in a way ”inverses” of each other. We do so
with the following two claims.

Claim. If G ⊆ P is a P-generic filter over V , then f−1[f̄(G)] = G.

Proof. It is clear that G ⊆ f−1[f̄(G)], because if p ∈ G, we have p ∈ f−1[{f(p)}] ⊆ G′. We have
already shown that both are P-generic filters, so equality follows from lemma 2.2.2.

Claim. If H ⊆ Q is a Q-generic filter over V , then H ′ := f̄(f−1[H]) = H.

Proof. It is clear that H ′ ⊆ H, because if q ∈ f̄(f−1[H]), there is some p ∈ f−1[H] (so f(p) ∈ H)
such that f(p) ≤ q, which means q ∈ H. Again equality follows from lemma 2.2.2.

So here we have shown that by using f we can take a P-generic filter, translate it to a Q-generic
filter, and can recover the original filter from this translation. We can also do the same thing
starting with a Q-generic filter. Thus we have shown that P and Q generate the same generic
extensions of V .

2.6 Preserving Cardinals

Definition. Let α ∈ V be a cardinal. Then we say a forcing P satisfies the α-chain condition if
every antichain has cardinality less than α. The ℵ1-chain condition may also be referred to as
the countable chain condition or simply ccc.

Lemma 2.6.1. Let α ∈ V be a cardinal and assume that P satisfies the α-chain condition, then

1. P preserves cofinalities greater than or equal to α.

2. If α is regular in V , then P preserves all cardinals greater than or equal to α.

In particular, if P satisfies the ccc, then P preserves all cardinals and cofinalities.

Proof. For the following, let G be a P-generic filter over V .
1. Let β be a cardinal in V such that cfV (β) ≥ α. Let γ ∈ Ord and assume f ∈ V [G] is a cofinal
map f : γ → β. Find a name ḟ ∈ V for f , and a p ∈ G such that p  “ḟ is a map from γ to β”.
Now for each ξ < γ define in V the set Aξ := {δ < β : ∃q ≤ p (q  ḟ(ξ̌) = δ̌)}. Since P has the
α-chain condition we can show that cardV (Aξ) < α. To do this, choose a witness qδ for each
δ ∈ Aξ such that qδ  ḟ(ξ̌) = δ̌. Then notice that {qδ : δ ∈ Aξ} is an antichain of P. It is easy
to see that range(f) ⊆

⋃
ξ<γ Aξ, so in particular, this set is cofinal in β. Since

⋃
ξ<γ Aξ ∈ V ,

and cfV (β) ≥ α, we have γ ≥ cfV (β), and thus cfV (β) = cfV [G](β).

2. Assume that α is regular in V . If β ≥ α is a regular cardinal in V , by 1., cfV [G](β) = cfV (β) = β,
so β is a regular cardinal in V . If β > α is a limit cardinal in V , then it is clear that the set
{γ : α ≤ γ < β ∧ “γ is a regular cardinal of V ”} is unbounded in β, and because each of these
regular cardinals is still a regular cardinal in V [G], β is also a cardinal in V [G].



3
Examples of Generic Reals

Now that we have introduced the notion of forcing, we will give three specific examples that add
new reals to the ground model, and examine some of their properties. Along the way, we will
show that the first two forcing notions exhibit the countable chain condition, and even though
the third does not, we will show that it does not collapse cardinals for another reason. All of
our examples come from [7], but can also be found in [8], [13], [10] and many more.

3.1 Cohen Reals

As stated earlier, forcing was discovered by Paul Cohen in 1963 while proving the independence
of the Axiom of Choice and of the Continuum Hypothesis from the Zermelo-Fraenkel axioms
of set theory. In his papers [4] and [5] Cohen introduces the technique of forcing to prove the
independence of the Continuum Hypothesis, and uses a forcing notion that will become the
prototype of the “Cohen forcing” that we will now examine. We will define this forcing in three
distinct ways, but show that all are equivalent.

Forcing with Finite Sequences of 0’s and 1’s

We define our forcing by C2 := 2<ω (the set of all finite sequences of 0’s and 1’s), and say p ∈ C2

is stronger than q ∈ C2 if p ⊇ q. (i.e. The sequence q is an initial segment of p.) We notice that
with this ordering, the empty sequence ∅ is our maximal element.

Forcing with Finite Sequences of Natural Numbers

We define another forcing Cω := ω<ω, saying again that p ∈ Cω is stronger than q ∈ Cω if p ⊇ q.
Again, we see the empty sequence is the maximal element of this forcing.

Forcing with Partial Functions from ω to ω with finite domain

Yet another way that we could define the Cohen forcing is by letting the forcing conditions be
partial functions p : dom(p) ⊆ ω → ω, where card(dom(p)) < ω. Let us call this forcing Cf , and
say p ∈ Cf is stronger than q ∈ Cf if p ⊇ q. The maximal element of this forcing is the empty
function.

Lemma 3.1.1. The Cohen forcing notions C2, Cω, and Cf defined above are all equivalent.
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Proof. First notice that Cω has a natural embedding into Cf , because any finite sequence of
natural numbers can be thought of as a function from its length to the natural numbers. Formally
we can think of it as the subset set {f ∈ Cf : ∀m,n ∈ ω, (m < n∧n ∈ dom(f))→ (m ∈ dom(f))}.
This set is clearly dense, as given any function f ∈ Cf , we can fill in the gaps in the domain
to create the sequence f̄ := f ∪ {(n, 0) : n ∈ max(dom(f))\dom(f)} ∈ Cω, and we have f̄ ≤ f .
Thus by theorem 2.5.1, Cω is equivalent to Cf .

Notice that there is also an obvious embedding of C2 into Cω, but the image is not dense, so we
need a different approach.

We will show Cω is equivalent to C2 by defining the map f : Cω → C2 by the following. Define
first g : ω → 2<ω by g(x) := {(n, xn) : n ≤ x ∧ (n < x→ xn = 1) ∧ (n = x→ xn = 0}. i.e. g(x)
is the sequence of x 1’s followed by a 0. Now define f recursively:

f(∅) = ∅

If f is defined for p ∈ Cω, and x ∈ ω

f(p_x) := f(p)_g(x)

(e.g. f(< 1, 0, 2, 4 >) =< 1, 0,︸︷︷︸
1,

0,︸︷︷︸
0

1, 1, 0,︸ ︷︷ ︸
2

1, 1, 1, 1, 0︸ ︷︷ ︸
4

>)

Remember that p1 ≤ p2 in Cω if p2 ⊆ p1. It is clear however that p2 ⊆ p1 if and only if
f(p2) ⊆ f(p1). Now notice that f(Cω) = {q ∈ C2 : the last term in the sequence is 0}, which is
dense in C2 (because we can add a zero to the end of any finite sequence). We have shown this
is a dense embedding, so by theorem 2.5.1, these forcing notions are equivalent.

Theorem 3.1.2. The Cohen forcing notions have the countable chain condition.

Proof. Each forcing described above is itself countable, so of course any antichain contained in
one of them is also countable.

We claim now that these forcing notions give rise to a real number that is not available to us
in the ground model. We will only show this explicitly for Cω, but the proof is similar for the
other two notions.

Theorem 3.1.3. If G is a generic filter on Cω, then f :=
⋃
G is a real number in the model

V [G].

Proof. We will show that f : ω → ω is a function (and thus a real number). Notice that if p,q ∈ G
then either p ⊆ q or q ⊆ p. Thus p and q agree on any common domain, so f : dom(f) → ω is
in fact a function. Next notice that the sets Dn := {p ∈ Cω : dom(p) ≥ n} are dense in Cω. By
genericity Dn ∩G 6= ∅ (and thus n ∈ dom(f)) for every n ∈ ω, so dom(f) = ω.

It is clear that given any forcing condition, we can find two extensions of it that are incompatible,
so by lemma 2.2.3 we know G /∈ V . We show that f /∈ V by the following lemma.

Lemma 3.1.4. The generic filter can be recovered from f . In particular V [f ] = V [G]

Proof. We show now that G = {p ∈ Cω : p ⊆ f}. One inclusion is obvious, as if p ∈ G, it is clear
that p ⊆ f . To show the other direction, suppose that f ⊇ p ∈ Cω and for each n ∈ dom(p)
find a pn ∈ G such that (n, p(n)) ∈ pn. Then by the filter properties (and because dom(p) is
finite), there is some p′ ∈ G such that for every n ∈ dom(p), pn ⊆ p′. Of course p ⊆ p′, so p ∈ G
because G is a filter. Now that G can be recovered from f , we have shown V [f ] = V [G].
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Theorem 3.1.5. In the Cohen extension V [G] there are functions f : ω → ω that are not
dominated by any function in V .

Proof. Again, we will work with the forcing Cω but there are similar proofs for the other two
notions as well. Let G be a generic filter on Cω and f :=

⋃
G. Now let g : ω → ω be any

function in V , and define Dg := {p ∈ Cω : ∃n ∈ dom(p)(g(n) < p(n))}. We can see that Dg is
dense, because given any q ∈ Cω and n /∈ dom(p), p∪ {(n, g(n) + 1)} ≤ p. Thus let d ∈ Dg ∩G,
and notice that d ⊆ f , so g does not dominate f .

We would now like to show that that the Cohen extension V [G] is not a minimal extension over
V . In fact, we will show that there is an intermediate extension that is also a Cohen extension.

Theorem 3.1.6. If G is a C2-generic filter over V , then there exist filters G0, G1 ⊆ C2 such that
G0 is C2-generic over V , G1 is C2-generic over V [G0], and V [G] = V [G0][G1]. In particular
V [G] is not a minimal generic extension of V .

Proof. For f ∈ C2, define new functions f0, f1 ∈ C2 by defining f0(n) := f(2n) and f1(n) := f(2n+1).
Now define a map F : C2 → C2 × C2 by setting F (f) := 〈f0, f1〉. If we let C2 → C2 take the
product ordering, it is not hard to show that this is a dense embedding, so there is a Ḡ ∈ C2×C2

such that V [G] = V [Ḡ]. Now if πi : C2×C2 → C2 is the canonical projection (i.e. πi(f0, f1) = fi)
then define Gi := πi[Ḡ]. We claim that these are the desired filters.

Claim. Both G0 and G1 are filters on C2.

Proof.

1. G0 6= ∅
This is clear, as Ḡ 6= ∅.

2. If p ≤ q and p ∈ G0 then q ∈ G0

Let p′ ∈ C2 such that 〈p, p′〉 ∈ Ḡ. Then 〈p, p′〉 ≤ 〈q, ∅〉, so 〈q, ∅〉 ∈ Ḡ, and thus q ∈ G0.

3. If p, q ∈ G0 there is an r ∈ G0 such that r ≤ p, q
Let p′, q′ ∈ C2 such that 〈p, p′〉, 〈q, q′〉 ∈ Ḡ, then there is some 〈r, r′〉 ∈ Ḡ such that
〈r, r′〉 ≤ 〈p, p′〉, 〈q, q′〉. By definition r ∈ G0 and r ≤ p, q.

Similarly G1 satisfies all of these.

Claim. G0 is C2-generic over V .

Proof. Let D ∈ V be dense in C2. Then notice that π−1
0 [D] is dense in C2×C2 by the following.

Let 〈p, q〉 ∈ C2 × C2, then by the density of D, find a p′ ∈ C2 such that p′ ≤ p = π0(〈p, q〉).
Now we have 〈p′, q〉 ∈ π−1

0 [D], and 〈p′, q〉 ≤ 〈p, q〉. So by genericity of Ḡ we can find a
〈p, q〉 ∈ π−1

0 [D] ∩ Ḡ, which gives us p ∈ D ∩G0.

Claim. G1 is C2-generic over V [G0].

Proof. Let D ∈ V [G0] be dense in C2, let Ḋ ∈ V be a name for D, and let p0 ∈ G0 such that
p0  “Ḋ is dense in Č2”. Now define D′ ∈ V by D′ := {〈q0, q1〉 : (q0 ≤ p0) ∧ (q0  q̌1 ∈ Ḋ},
and show it is dense under 〈p, ∅〉 in C2 ×C2 by the following. Let 〈p, q〉 ∈ C2 ×C2 be such that
p ≤ p0. Now since p ≤ p0, p  ∃x ∈ Č2(x ∈ Ḋ ∧ x ≤ q̌), so in particular, there is a p′ ≤ p and
q′ ∈ C2 such that p′  q̌′ ∈ Ḋ ∧ q̌′ ≤ q̌. In other words 〈p′, q′〉 ≤ 〈p, q〉 and 〈p′, q′〉 ∈ D′. Now
that we know D′ ∈ V is dense below p0 in C2 × C2, we can find a 〈p, q〉 ∈ D′ ∩ Ḡ. So we have
q ∈ G1, and p ∈ G2 such that p  q̌ ∈ Ḋ, and thus q ∈ D ∩G1.
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It doesn’t take much work to show that we can recover Ḡ from these two filters by Ḡ = G0×G1,
so the end result is V [G] = V [Ḡ] = V [G0][G1].

Notice that A := {n ∈ ω : f0(n) = 1} is a subset of the natural numbers (and therefore a subset
of the ordinals) and A ∈ V [G], but V [A] = V [G0] ( V [G], so V [G] is not minimal over V .

Lemma 3.1.7. If d is a Gδ-code of the intersection of countably many open dense subsets of R
in V , and a =

⋃
G is the Cohen real generated by the forcing Cω, then a ∈ dM [G].

Proof. If c ∈ d, then c is a Gδ-code for a dense open set in V . Define now

Dc := {p ∈ Cω : ∃〈r, s〉 ∈ c ∀y ∈ R(p ⊆ y → y ∈ (r, s))}

We show first thatDc is dense in Cω. To do this, let q ∈ Cω, and remember Uq := {x ∈ ωω : q ⊆ x}
is a basic open set in R. Since cM is dense in RM , and (Uq)

M is an open subset of RM , there is
some y0 ∈ (Uq)

M ∩ cM , and thus some 〈r, s〉 ∈ c such that y0 ∈ (r, s)M . Since the sets Up where
p ∈ Cω generate a basis for the topology of R, we can find some p ≤ q such that Up ⊆ (r, s),
and thus p ∈ Dc. Now that we have a dense set, by genericity of G, let p ∈ G ∩Dc, and notice
that p ⊆ a, and therefore a ∈ (r, s)M [G] ⊆ cM [G]. Since this holds for all c ∈ d, the result is
a ∈ dM [G].

3.2 Random Reals and the Solovay Forcing

Soon after Cohen’s introduction of forcing, Robert Solovay introduced the concept of the random
real. This real is called “random” because, as we will show, given a name for any Borel set of
full Lebesgue measure in the ground model, the new random real will appear as an element of
the interpretation of said name in the generic extension. (By full measure, we mean a set whose
complement has measure zero.) In 1965, while working with Lebesgue measurability, Solovay
was led to assigning a truth value from a complete Boolean algebra to each formula [9]. He in
in turn developed a method of forcing using complete Boolean algebras that was made popular
by Dana Scott at a set theory conference held at UCLA in the summer of 1967. Scott even
reproduced the work of Cohen using Boolean models in the paper [12]. We however will stay
with forcing with partial orders, but will borrow the technique of assigning truth values to show
an important property of random reals.

Forcing with Borel Sets

We let our forcing conditions be the Borel sets in R of positive Lebesgue measure. We then say
p ∈ B is stronger than q ∈ B if µ(p\q) = 0. It may be easier to remember p ≤ q if p ⊆ q almost
everywhere. We can see that our maximal element can be the real line itself.

Forcing with Closed Sets

For convenience, we will focus our attention on the subforcing BC defined by the closed (and
therefore Borel) subsets of the real line with positive Lebesgue measure. The maximal element
is again the full real line. This is clearly a dense embedding by the properties of Borel sets
introduced in Chapter 1, and thus equivalent to the full forcing B.

Lemma 3.2.1. The random real forcing has the countable chain condition.
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Proof. Let A ⊆ B be an antichain in B. Then if p ∈ A, there is some n ∈ Z, and an m ∈ N such
that µ(p ∩ (n, n + 1) > 1

m). So A =
⋃
{{p ∈ A : µ(p ∩ (n, n + 1)) > 1

m} : (n,m) ∈ Z × N}, and
for each (m,n), the set {p ∈ A : µ(p ∩ (n, n + 1)) > 1

m} is finite (in fact it has cardinality less
than m), and thus the union over the countable set Z× N is at most countable.

Theorem 3.2.2. If G is a generic filter on BC then
⋂
{pV [G] : “p ∈ V is an F -code”∧ pV ∈ G}

contains a single element, and it is a real number of V[G].

Proof. Since G is a filter, it has the finite intersection property. We can also see the sets
Dn := {p ∈ BC : diam(p) < 1

n} are dense in BC . This of course means some of our sets are

bounded, so by compactness the intersection
⋂
{pV [G] : “p ∈ V is an F -code” ∧ pV ∈ G} is not

empty in V [G]. Using the Dn’s, we can see that this intersection contains a single point, let us
call it a.

Theorem 3.2.3. The generic filter G can be recovered from a. In particular V [G] = V [a] and
a /∈ V .

Proof. Let H := {pV : “p ∈ V is an F -code” ∧ a ∈ pV [G]}. We will now show that G = H.

It is almost trivial that G ⊆ H, because if p ∈ V is an F -code such that pV ∈ G, then by
definition a ∈ pV [G], and thus pV ∈ H. We now show inclusion in the other direction.

Let p ∈ V be an F -code with pV ∈ H, and extend the singleton {pV } to a maximal antichain A
of BC with the property that for every p, q ∈ A, p ∩ q = ∅. We will show first that A is actually
maximal with respect to all antichains of BC . Suppose that this is not the case, then let r ∈ BC
such that A ∪ {r} is an antichain in BC . Notice first that

µ(r\
⋃
A) = µ(r)− µ(r ∩

⋃
A) = µ(r)−

∑
p∈A

0 = µ(r)

So r\
⋃

A is a Borel set of positive measure, and thus contains a closed subset r′ of positive
measure. It is also clear that for any s ∈ A, s ∩ r′ ⊆ s ∩ (r\

⋃
A) = ∅. This of course is

a contradiction to the maximality property of A, because A ∪ {r} is another antichain with
pairwise disjoint elements. This means that A is already an antichain of BC in the usual sense.

We know now that G must contain one element q ∈ A, so we assume that pV 6= q. Since
q ∈ G, it has an F -code q̂ ∈ V such that a ∈ q̂V [G], and thus q̂V [G] ∩ pV [G] 6= ∅. However as
elements of A, we have q̂V ∩ pV = ∅. To show this is impossible, start by finding the n such that
a ∈ [n, n+1]V [G]. Now for each pair of rational numbers 〈r, s〉 ∈ p∪q̂ notice that either n < a < r
or s < a < n+ 1, so [n, n+ 1]V \(r, s)V is either the set [n, r]V or [s, n+ 1]V . If we take a finite
collection of pairs, say for m ∈ ω we have the collection {〈ri, si〉 : i ∈ m∧〈ri, si〉 ∈ p∪q̂}, then the
set

⋂
{[n, n+ 1]V \(ri, si)V : i ∈ m} is nonempty. (In fact if we say sm := n, and rm := n+ 1 it is

the closed interval [max{si : i ≤ m},min{ri : i ≤ m}]V .) Thus {[n, n+1]V \(r, s)V : 〈r, s〉 ∈ p∪q̂}
is a collection of compact subsets of the real line (in V) that has the finite intersection property,
and therefore has nonempty intersection. But⋂

{[n, n+ 1]V \(r, s)V : 〈r, s〉 ∈ p ∪ q̂} = (pV ∩ q) ∩ [n, n+ 1] ⊆ (pV ∩ q) = ∅

which is a contradiction, so q and p must be one and the same.

We have proven that G can be recovered from a, so the extension is generated by the single real
a. In particular V [G] = V [a], and because it is clear that every condition has two extensions
that are incompatible, we know a /∈ V .
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We want to show that the random real extension is different from the Cohen extension described
in the previous section. To do this, we will show that every sequence of natural numbers in the
extension is dominated by one in the ground model. To do that, we will borrow the notion of
“truth value” from the Boolean algebra approach to forcing.

Definition. Let φ be a formula in the forcing language, then the truth set of φ (in the Solovay
forcing) is defined by |φ| := {

⋃
A : A is a maximal antichain of {p ∈ B : p  φ}}.

Lemma 3.2.4. Let φ be a formula, r ∈ |φ|, and q ∈ B. Then q ≤ r if and only if q  φ. In
particular r  φ.

Proof. Let A be a maximal antichain such that
⋃
A = r, and assume q  φ. Suppose for

contradiction that q � r. Then µ(q\r) > 0, so q\r ∈ B, and as we can see q\r ≤ q, so
q\r  φ. This however contradicts the maximality of A, because A ∪ {q\r} is an antichain of
{p ∈ B : p  φ}.

Let us now suppose that q ≤ r, but assume q 1 φ. Then by the forcing theorem, there is some
s ≤ q such that s  ¬φ. This means however that given any p ∈ B such that p  φ we have
p ⊥ s, in other words µ(s ∩ p) = 0. Thus s ∩ r =

⋃
({s ∩ p : p ∈ A} is a null set (because A is

countable by the ccc), contradicting the fact that s ⊆ q ⊆ r and all have positive measure.

Corollary 3.2.5. Let φ be a formula and q, r ∈ |φ|. Then q and r differ only by a null
set. Formally, the symmetric difference q∆r = (q\r) ∪ (r\q) has measure zero. In particular
µ(q) = µ(r).

Proof. Suppose for contradiction that µ(q∆r) > 0. Then without loss of generality µ(q\r) > 0.
But then q\r ∈ B, and is a stronger condition than q, and thus forces φ. But by the previous
lemma q\r ⊆ r, and it is clear that this is a contradiction.

In a sense, we see now that the truth set of φ is actually an equivalence class “maximal” of
conditions that force φ. It will benefit us to talk about a representative of the class. From here
on, we will let the notation ||φ|| mean to take any representative of the class |φ|.

Lemma 3.2.6. If ḟ ∈ V is a name, and p ∈ B such that p  ḟ : ω → ω, then for each
n ∈ ω the set Fn := {||ḟ(n) = i|| ∩ p : i ∈ ω} partitions p. (i.e. µ(

⋃
Fn) = µ(p), and

µ((||ḟ(n) = i|| ∩ p) ∩ (||ḟ(n) = j|| ∩ p)) = 0 if i 6= j.)

Proof. Let i, j ∈ ω such that i 6= j, and let p′ := (||ḟ(n) = i|| ∩ p) ∩ (||ḟ(n) = j|| ∩ p), then if
µ(p′) > 0, p′ ∈ B, and has the properties that p′  ḟ : ω → ω, p′  ḟ(n) = i, and p′  ḟ(n) = j.
Since i 6= j, this is a contradiction.

Now let us suppose that µ(
⋃
Fn) ≤ µ(p), then p\

⋃
Fn ∈ B, and forces ḟ : ω → ω, so there is

some stronger condition q ∈ B and some m ∈ ω such that q  ḟ(n) = m. We now have by a
previous lemma q ≤ ||ḟ(n) = m|| ≤

⋃
Fn but we chose q ≤ p\

⋃
Fn. This of course is impossible,

so we must have µ(
⋃
Fn) = µ(p).

Lemma 3.2.7. In the random extension, every f : ω → ω is dominated by some g ∈ V .

Proof. Let f : ω → ω be a function in V [G], and let ḟ ∈ V be a G-name for f . Then under
each p ∈ B such that p  ḟ : ω → ω we will find a p′ ∈ B and an fp ∈ V , fp : ω → ω such that
p′  ∀n ∈ ω(ḟ(n) < fp(n)).
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For each n ∈ ω find an mn ∈ ω such that µ(p\||ḟ(n) < mn||) < 1
4(1

2)nµ(p). This is possible

because the set {||ḟ(n) = i|| ∩ p : i ∈ ω} partitions p. Now we define fp(n) := mn, and let
p′ :=

⋂
{||ḟ(n) < mn|| : n ∈ ω}. Notice that p′ is a Borel set, and

µ(p\p′) <
∑
n∈ω

(
1

4
(
1

2
)nµ(p)) =

1

2
µ(p)

so µ(p′) ≥ 1
2µ(p) > 0. Thus p′ is a forcing condition, and p′  ∀n ∈ ω(ḟ(n) < fp(n)). It is clear

that the set {p′ : p ∈ B ∧ p  ḟ : ω → ω} ∈ V is dense in B “where we need it to be”, so one
such p′ is in the generic filter, and ḟG ∈ V [G] is dominated by some fp ∈ V .

Finally we end by classifying what exactly it means to be a random real.

Theorem 3.2.8. A real number a is random over the ground model V if and only if for every
null Borel set q ∈ V , and Borel code p ∈ V such that pV = q, we have a /∈ pV [a]. Since every
null set is contained in a null Gδ set, we may assume that p is a Gδ-code.

Proof. Suppose first that a is random over V , that is let a =
⋂
G where G is a B-generic filter

over V . Let p ∈ V be a Gδ-code for a null Gδ set in V . Then notice that {RV \pV } is a maximal
antichain in B, so the single element RV \pV is an element of G. This gives us however that
a /∈ pV [a].

Now let us assume that a is a real number such that a /∈ pV [a] for all Gδ-codes p ∈ V with pV is
a null set. Notice that this means a /∈ V , because if it were, the singleton {a} would be a null
set. Then define a filter on BC by G := {pV : “p ∈ V is an F -code”∧ a ∈ pV [a]}. Then we claim
that G is a generic filter, and a ∈

⋂
G is the unique random real generated by G.

1. G is not empty

It is clear that RV ∈ G.

2. If p < q and p ∈ G, then q ∈ G
Since p < q we have p\q is a null set. Then there are F -codes p̂ and q̂ ∈ V , and a Gδ-code
r̂ ∈ V such that p̂V = p, q̂V = q, and r̂V = p\q. From the assumption on a, we have that
a /∈ r̂V [G]. But a ∈ p̂V [G], so a must be an element of q̂V [G]. Thus q ∈ G.

3. If p, q ∈ G then there is an r ∈ G such that r ≤ p, q
Since p, q are both elements of G, we have a ∈ (p̂ ∩ q̂)V [a], for p̂ and q̂ ∈ V being Gδ-
codes for p and q. From the assumption on a, this means (p ∩ q) can not be a null set in
V , and thus has positive measure. Now take any closed set r contained in (p ∩ q) with
µ(r) = µ(p ∩ q). Then r ∈ G and r ≤ p, q.

4. If A is a maximal antichain in BC then A ∩G 6= ∅
Since A is a maximal antichain, we know RV \

⋃
A is a null Gδ set. Thus

a /∈ RV [a]\
⋃
{pV [G] : “p is an F -code” ∧ pV ∈ A}, so for some F -code p ∈ V with pV ∈ A,

a ∈ pV [G], which means pV ∈ A ∩G.

We can see now that G is in fact a generic filter on BC over V , and a ∈
⋂
{pV [G] : pV ∈ G}, so

a is a random real over V .



3. Examples of Generic Reals 22

3.3 Sacks Reals

The next notion we shall look at is the Sacks forcing introduced by Gerald Sacks designed to
produce a minimal model. We lose the countable chain condition with this model, but can show
that cardinals are preserved for another reason. Our forcing conditions will be perfect trees,
which we define now.

Definition. We say p ⊆ 2<ω is a tree if for all s ∈ p and for all t ⊆ s, t ∈ p. A tree p 6= ∅ is
perfect if for all s ∈ p there is a t ⊇ s such that both t_0 ∈ p and t_1 ∈ p.

Definition. Given a tree p, and an element s ∈ p, then we define the restriction of p to s as

p � s := {t ∈ p : t ⊆ s ∨ s ⊆ t}

Corollary 3.3.1. If p is perfect, and s ∈ p then p � s is perfect.

Definition. Given a tree p, and n ∈ ω the nth level of p is the set p(n) := {s ∈ p : |s| = n}

Lemma 3.3.2. If p is a perfect tree, p(n) 6= ∅ for every n ∈ ω.

Proof. Suppose to the contrary that there was an n ∈ ω such that p(n) = ∅, and let n be
minimal with this property. If n = 0, p = ∅, so p is not perfect. Otherwise, p(n − 1) 6= ∅,
so let s ∈ p(n − 1). Since p is perfect, there is some t ∈ p such that t ⊇ s and t_0 ∈ p, so
(t_0) � n ∈ p(n).

Forcing with Perfect Trees

Let T be the set of all perfect trees p ⊆ 2<ω, and say a tree p ∈ T is stronger than q ∈ T if and
only if p ⊆ q. The maximal element of this forcing is the full tree 2<ω.

It is not difficult to see that the Sacks forcing does not have the countable chain condition. What
is clear is that card(T) = 2ℵ0 , so in particular if V |= CH, we do have the ℵ2-chain condition,
and thus all cardinals greater than ℵ1 are preserved. It is left to show that this forcing does not
collapse ℵ1, which we will do in the following lemmas.

Definition. In a tree p, we say s ∈ p is a branching point if both s_0 ∈ p and s_1 ∈ p. We
say s ∈ p is an nth branching point if there are exactly n branching points contained in s. We
say now p ≤n q if p ⊆ q and if s ∈ p is an nth branching point of p, then it is an nth branching
point of q.

Corollary 3.3.3. It is almost immediately clear that a tree is perfect if and only if it has 2n

many nth branching points for each n ∈ ω.

Definition. A sequence of trees 〈ti : i ∈ ω〉 is called a fusion sequence if for all i ∈ ω, ti ≤i ti+1.

Lemma 3.3.4. If 〈ti : i ∈ ω〉 is a fusion sequence of perfect trees, then
⋂
{ti : i ∈ ω} is a perfect

tree.

Proof. If we let Sn be the set of nth branching points of tn, it is easy to see that Sn is the set
of nth branching points for all tm with m > n, and thus of

⋂
{ti : i ∈ ω}. Since tn is perfect,

|Sn| = 2n, which in turn tells us that
⋂
{ti : i ∈ ω} has 2n many nth branching points, and is

thus perfect.
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Lemma 3.3.5. If A is a countable set of ordinals in V [G] then there is a set B ∈ V countable
in V such that A ⊆ B.

Proof. Let f ∈ V [G] be a surjection f : ω → A. Then for each p ∈ T such that p  ḟ : ω → ORD,
we define p′ ≤ p in the following way. First let p0 := p. Now given pn, we construct pn+1 as
follows. Let Sn be the set of nth branching points of pn. Then for each s ∈ Sn and i ∈ 2
find a condition psi ⊆ p � (s_i), and an ordinal asi such that psi  ḟ(ň) = asi . Then define
pn+1 :=

⋃
{psi : s ∈ Sn ∧ i ∈ 2}.

Claim. The sequence 〈pn : n ∈ ω〉 is a fusion sequence.

Proof. It is clear that for each n, pn ⊆ pn+1. Now let s be an nth branching point of pn. Then
s_i ∈ psi for i = 1, 2, so both are elements of pn+1, and thus s is a branching point of pn+1.
Now if t ( s was also a branching point of p, then since p is perfect, there are nth branching
points t0 and t1 above t_0 and t_1 respectively. So both t_0 and t_1 are elements of pn+1,
and therefore s is an nth branching point of s.

Since this was a fusion sequence, it’s intersection p′ :=
⋂
{pn : n ∈ ω} is a condition of T. Define

Bp := {asi : s ∈ Sn ∧ n ∈ ω ∧ i ∈ {0, 1}}, which is obviously countable in V , and notice that
p′  Range(A) ⊆ B̌p. Now the set {p′ : p ∈ T∧ p  ḟ : ω → ORD} is dense in T “where we need
it to be”, so there is such a p′ ∈ G, thus proving our theorem.

Theorem 3.3.6. If the ground model V satisfies CH, then the forcing T preserves all cardinals.

Proof. It is clear that with CH card(T) = ℵ1, and thus satisfies the ℵ2-chain condition and
preserves all cardinals greater than ℵ1. Assume now that the forcing collapses ℵ1. That is, ωV1
is assumed to be countable in V [G]. Then by the previous lemma, in V we have ωV1 is contained
in a countable subset of V , which is a contradiction.

Theorem 3.3.7. If G is a generic filter on T then f :=
⋃

(
⋂
G) is a function f : ω → 2 and is

thus a real number in V [G].

Proof. For each n ∈ ω define the set Dn := {p ∈ T : |p(n)| = 1}. We claim that these sets are
dense in T. To show this, let n ∈ ω, p ∈ T, and take s ∈ p(n). Then the tree p � s is perfect,
and (p � s)(n) = {s}, so it is an element of Dn.

Now let s, t ∈
⋂
G (notice that these are finite binary sequences and not trees), and let

n ∈ dom(s) ∩ dom(t). Then choose a p ∈ G ∩ Dn, and let p1 be the unique element in p(n).
Since s, t ∈ p, and n ∈ dom(s) ∩ dom(p), we can see that s � (n + 1) = p1 = t � (n + 1). So s
and t agree on any common domain, and f is a function f : dom(f)→ 2.

Now we show that dom(f) = ω. For any n ∈ ω we can find a p ∈ G ∩ Dn. Now let s be the
unique element of p(n + 1). Let q ∈ G and we will show that s ∈ q. Since p, q ∈ G, there is
some r ∈ G such that r ⊆ p, q. Since r is perfect, r(n+ 1) 6= ∅. Since r(n+ 1) ⊆ p(n+ 1) = {s},
s ∈ r, and thus s ∈ q. In particular s ∈

⋂
G, so n ∈ dom(f).

Theorem 3.3.8. The Sacks real described above is not a real in the ground model.

Proof. Let g ∈ V ∩ 2ω, and define the set Dg := {p ∈ T : ∃n (f � n /∈ p)}. We show now that
Dg is dense in T. Let p ∈ T, and assume that for all n we have f � n ∈ p. Then let s ∈ p be a
branching point such that without loss of generality s_0 ⊆ f . Let n ∈ ω such that s_0 = f � n.
Then p � (s_1) is a perfect tree that does not contain f � n, but extends p. We have now shown
that Dg is dense, so there is some p ∈ Dg ∩G, and it is clear that p  ǧ 6=

⋃⋂
G.
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Definition. If p is a tree, we define the Cantor-Bendixon derivative of p to be

p′ := {s ∈ p : “s is below a branching point of p”}

We let the p(0) := p. If p(α) is defined, we define p(α+1) := (p(α))′. If α is a limit ordinal, and
p(β) is defined for every β < α we define p(α) :=

⋂
{p(β) : β < α}.

Lemma 3.3.9. Let p be a tree, then there exists a countable ordinal α such that p(α) = p(α+1),
and either p(α) is empty or it is perfect.

Proof. Notice that if s ∈ p is removed at some step, so is the entire open set Us (open in
the space 2ω). Since there are only countably many open sets in 2ω, the decreasing sequence
〈p(α) : α ≤ ω1〉 has to stabilize after countably many steps. Let α < ω1 be a countable ordinal
such that p(α) = p(α+1). Then if p(α) is not empty, it is clear that every point in p(α) lies below
a branching point of p(α), and thus the tree is perfect.

Theorem 3.3.10. If we let H := {p ∈ T : ∀n ∈ ω (f � n ∈ p)}, then G = H. In particular G
can be recovered from f , so V [G] = V [f ].

Proof. If p ∈ G, it is clear that f � n ∈ p for all n ∈ ω, so we have immediately that G ⊆ H.
Now we show that H is a filter, and by lemma 2.2.2 we are done.

1. H is not empty

It is immediate that 2ω ∈ H.

2. If p ≤ q and p ∈ H then q ∈ H
Let n ∈ ω, then f � n ∈ p by the definition of H, and f � n ∈ q because p ≤ q. Since this
holds for all n ∈ ω, q ∈ H.

3. If p, q ∈ H then there is some r ∈ H such that r ≤ p, q
Find a countable ordinal α such that (p ∩ q)(α) = (p ∩ q)(α+1). We claim that (p ∩ q)(α)

is perfect, and therefore a common extension of p and q. Suppose on the contrary that
(p ∩ q)(α) is empty. Let β < α be minimal with the property ∃n (f � n /∈ (p ∩ q)(β)),
and let m ∈ ω be the witness to this. It is clear that β 6= 0, because for every n ∈ ω
we have f � n ∈ p ∩ q). We also know that β is not a limit ordinal, because then
(p ∩ q)(β) :=

⋃
{(p ∩ q)(γ) : γ < β}, so if f � n /∈ (p ∩ q)(β), then there is some γ < β such

that f � n /∈ (p ∩ q)(γ). Notice however that f =
⋃
{s ∈ (p ∩ q)(β−1) : f � m ⊆ s}, which

is definable in V . We have however shown that f /∈ V , so this cannot be true. Therefore
(p ∩ q)(α) is a perfect tree and is also an extension of both p and q.

Theorem 3.3.11. The Generic extension over T is minimal over the ground model V .

Proof. We start by letting G be a generic filter on T, taking X ∈ V [G] as a subset of the ordinals
such that X /∈ V , and letting Ẋ ∈ V be a T-name of X. For each p ∈ G such that p  Ẋ /∈ V ,
we will find a p′ ≤ p and a function fp′ ∈ V [X] such that if p′ ∈ G, then fp′ = f =

⋃⋂
G.

Start by letting p0 be a condition such that p  Ẋ /∈ V . We will find p′ by constructing a fusion
sequence. For each n ∈ ω let Sn be the set of nth branching points of pn, and for each s ∈ Sn
find an ordinal γs such that pn � s cannot decide γ̌n ∈ Ẋ. For each s, let ps0 ⊆ p � (s_0), and
ps1 ⊆ p � (s_1) be conditions such that one forces γ̌s ∈ Ẋ, and the other forces γ̌s /∈ Ẋ. Define
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pn+1 :=
⋃
{psi : s ∈ Sn ∧ i ∈ 2} and define p′ :=

⋂
n∈ω pn.

We can see with the argument used in lemma 3.3 that the sequence 〈pn : n ∈ ω〉 is a fusion
sequence. We know then that p is a perfect tree, and thus a condition of T.
Now for each p ∈ T define a function fp ∈ V [X] by:

fp :=
⋃
{s_i ∈ p : (s is a branching point of p) ∧ (i ∈ 2)∧

(∀γ ∈ ORD (γ ∈ X ∧ p � (s_i)  γ̌ ∈ Ẋ)∨
(γ /∈ X ∧ p � (s_i)  γ̌ /∈ Ẋ)∨
(p � (s_i) 1 γ̌ ∈ Ẋ ∧ p � (s_i) 1 γ̌ /∈ Ẋ))}

Notice that if p′ is the result of a fusion sequence defined above, and p′ ∈ G, then fp′ = f =
⋃⋂

G.
Since {p′ : p ∈ T∧ p  Ẋ /∈ V } is dense below every p that forces Ẋ /∈ V , we know there is such
a p′ ∈ G, and we are done.
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Iterated Forcing

As Cohen states in [6], “Having shown how to adjoin one “generic” element... The obvious way
[to violate the continuum hypothesis] is to adjoin sets of integers ai where i ranges over all the
ordinals less than ℵ2”. We will look at methods of doing just that.

4.1 The Two Step Iteration

In our first method, we assume we have a forcing P ∈ V , and a forcing Q in the generic extension
V [GP ] (where GP is a P -generic filter over V ). We then want to construct a forcing P ∗ Q in
the ground model that will give the same extension obtained by forcing first with P over V and
then with Q over V [GP ].

Definition. Suppose (P,≤P , 1P ) ∈ M is a forcing, and further that (Q̇, ≤̇Q, 1̇Q) ∈ M are

names such that 1P  [1̇Q ∈ Q∧ “(Q̇, ≤̇Q, 1̇Q) is a forcing with maximal element 1̇Q”]. Then

the two-step iteration (P ∗ Q̇,≤, 1) is defined by the following:

P ∗ Q̇ := {(p, q̇) : p ∈ P ∧ q̇ ∈ Dom(Q̇) ∧ p P q̇ ∈ Q̇}

(p′, q̇′) ≤ (p, q̇) ⇐⇒ p′ ≤P p ∧ p′ P q̇′≤̇Qq̇

1 := (1P , 1̇Q)

Lemma 4.1.1. The two step iteration described above is a forcing on M .

Proof. It is clear from the definition that P ∗Q ∈M , so we just need to show that the ordering
≤ is reflexive, transitive, and that 1 is the maximal element.

1. ≤ is reflexive

If (p, q̇) ∈ P ∗ Q̇ then clearly p ≤P p and since 1p  “Q̇ is a forcing”, p  “Q̇ is a forcing”
∧q̇ ∈ Q̇. So in particular p  q̇≤̇Qq̇. So (p, q) ≤ (p, q).

2. ≤ is transitive

Let (p′′, q̇′′) ≤ (p′, q̇′) and (p′, q̇′) ≤ (p, q̇), with each pair an element of P ∗ Q̇. Then
p′ ≤ p and p′  q̇′≤̇Qq̇ so because p′′ ≤ p′ and p′′  q̇′′≤̇Qq̇′, we also get p′′ ≤ p and

p′′  q̇′≤̇Qq̇ ∧ q̇′′≤̇Qq̇′. Since p′′ also forces that Q̇ is a forcing, we get p′′  q̇′′≤̇Qq̇. Thus
(p′′, q̇′′) ≤ (p, q̇).
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3. 1 is the maximal element of P ∗ Q̇
Let (p, q̇) ∈ P ∗ Q̇, then 1P ≤ p, and p  “Q̇ is a forcing”∧q̇ ∈ Q̇, we have p  q̇≤̇Q1̇Q.

So P ∗ Q̇ is a forcing in M .

Lemma 4.1.2. If we have a two step iteration described above, and G is a P -generic filter over
M , H is a Q = Q̇G-generic filter over M [G], then G ∗H := {(p, q̇) ∈ P ∗ Q̇ : p ∈ G ∧ q̇G ∈ H}
is a P ∗ Q̇-generic filter over M .

Proof.

1. G ∗H is not empty

True because (1P , 1̇Q) ∈ G ∗H.

2. If (p, q̇) ≤ (p′, q̇′) and (p, q̇) ∈ G ∗H then (p′, q̇′) ∈ G ∗H
Since p ∈ G and p ≤ p′, we have p′ ∈ G. Now p  q̇ ∈ Q̇∧ q̇′ ∈ Q̇∧ q̇′ ≤ q̇, so in particular,
since p ∈ G, q̇G ≤ q̇′G and both are elements of Q̇G. Since H is a filter and q̇G ∈ H, so is
q̇′G. The result is (p′, q̇′) ∈ G ∗H.

3. If (p, q̇), (p′, q̇′) ∈ G∗H then there is some (p′′, q̇′′) ∈ G∗H such that (p′′, q̇′′) ≤ (p, q̇), (p′, q̇′)

Since q̇G, q̇′G ∈ H, and H is a filter, find some q′′ ∈ H such that q′′ ≤ q̇G, q̇′G. Now find a
name q̇′′ ∈ Dom(Q̇) for q′′. Similarly, find a p′′ ≤ p, p′, but let us choose it in a way that
p′′ also forces q̇′′ ∈ Q̇, q̇′′ ≤ q̇, and q̇′′ ≤ q̇′. Then (p′′, q̇′′) ∈ G ∗ H and is stronger than
both (p, q̇) and (p′, q̇′) as desired.

4. If D ∈M is dense in P ∗Q then G ∗H ∩D 6= ∅
First, define the set DQ := {q̇G : q̇ ∈ Dom(Q̇)∧∃p ∈ G(p, q̇) ∈ D}. We will show that this
set is dense in Q over M [G]. Let q ∈ Q, then there is some P -name q̇ ∈ Dom(Q̇) such that
q̇G = q, and we can find a p ∈ G such that p  q̇ ∈ Q̇. Then it is clear that (p, q̇) ∈ P ∗ Q̇.

Now define the set D(p,q̇) := {r ∈ P : r ≤ p ∧ ∃ṡ ∈ Dom(Q̇)[(r, ṡ) ∈ D ∧ p  ṡ ≤ q̇]}, and

we claim this set is dense below p ∈ P . To show this, let p′ ≤ p, then p′  q̇ ∈ Q̇, so
(p′, q̇) ∈ P ∗ Q̇. By the density of D there is some (r, ṡ) ≤ (p′q̇) such that (r, ṡ) ∈ D. We
have then by definition r ≤ p and r  ṡ ≤ q̇, so r ∈ D(p,q̇) and r ≤ p′, proving that D(p,q̇)

is dense under p.

By the genericity of G, we now know that there is some p′ ≤ p such that p′ ∈ D(p,q̇) ∩G.

So for some q̇′, (p′, q̇′) ∈ D and p′  q̇′ ≤ q̇. Since p′ ∈ G, q̇′G ≤ q̇G = q and q̇′G ∈ DQ,
proving the density of DQ that we wanted in Q.

Now since DQ is dense in Q over M [G], there is some q̇G ∈ DQ ∩H. Since this q̇G ∈ DQ,
there is some p ∈ G such that (p, q̇) ∈ D. Thus (p, q̇) ∈ G ∗H ∩D, proving that G ∗H is
a P ∗ Q̇-generic filter over M .

Theorem 4.1.3. Forcing with the two step iteration P ∗ Q̇ is equivalent to forcing first with P
and then with the interpretation of Q̇ in the P -generic extension.
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Proof. LetG be a P∗Q̇-generic filter over V . Define thenG1 := {p ∈ P : ∃q̇ ∈ dom(Q̇) (p, q̇) ∈ G}
and G2 := {q̇G1 : ∃p ∈ P (p, q̇) ∈ G}. We claim then that G1 is P -generic over V , G2 is Q̇G1-
generic over V [G1], and G = G1 ∗G2.

1. G1 is not empty

This follows from G is not empty.

2. If p ≤ p′ and p ∈ G1 then p′ ∈ G1

Since p ∈ G1, there is some q̇ such that (p, q̇) ∈ G. Then (p, q̇) ≤ (p′, q̇), so (p′, q̇) ∈ G and
thus p′ ∈ G1.

3. If p, p′ ∈ G1 then there is some p′′ ∈ G1 such that p′′ ≤ p, p′

Similarly take (p, q̇), (p′, q̇′) ∈ G, then there is a (p′′, q̇′′) ∈ G that extends both. Then
p′′ ∈ G1 and p′′ ≤ p, p′.

4. If D ∈M is dense in P then G1 ∩D 6= ∅
Define D ∗ Q̇ := {(p, q̇) : p ∈ D∧ q̇ ∈ dom(Q̇)}. This set is dense in P ∗ Q̇, so there is some
(p, q̇) ∈ (D ∗ Q̇) ∩G. Clearly p ∈ D ∩G1, proving our claim.

The proof for G2 is similar.

4.2 Finite and Countable Support Iterations

We would like to be able to add a large number of generic elements to our ground model. At
the same time, we would like to preserve some of the nicer properties of forcing notions. Here
we introduce two methods of iterated forcing.

Definition. A sequence 〈Pα,≤Pα , 1Pα ; Q̇β, ≤̇Qβ : β < γ, α ≤ γ〉 is a (finite) countable support
iteration if the following hold:

1. The (Pα,≤Pα , 1Pα) are forcing notions.

2. If x ∈ Pα then it is a function x : α→ V . The support of x is defined by

supp(x) := {β < α : x(β) 6= ∅}

3. If α ≤ γ is a limit ordinal, then:

(a) Pα = {p : α→ V : ∀β < α(p � β ∈ Pβ) ∧ supp(p) is (finite) at most countable}
(b) p ≤Pα q if and only if ∀β < α (p � β ≤Pβ q � β)

(c) 1Pα(β) = ∅ for all β < α

(Notice that by the above definition P0 is the trivial forcing: 〈{∅}, 〈∅, ∅〉, ∅〉.)

4. For every α < γ (1Pα Pα (Q̇α, ≤̇Qα , ∅) is a forcing)

5. If α < γ then

(a) Pα+1 = {p : (α+ 1)→ V : p � α ∈ Pα ∧ p(α) ∈ dom(Q̇α) ∧ (p � α) Pα p(α) ∈ Q̇α}
(b) p ≤α+1 q if and only if p � α ≤α q � α ∧ (p � α) Pα p(α) ≤α q(α)
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(c) 1Pα+1(β) = ∅ for all β < α+ 1

We may also abuse notation in the normal way, and write simply 〈Pα, Q̇α : α ≤ γ〉.

Remark. Notice first that if α ≤ β there is a natural inclusion of Pα ↪→ Pβ, namely p 7→ p′,

where p′(ξ) :=

{
p(ξ) if ξ < α

∅ if α ≤ ξ ≤ γ
. Through this definition, we can think of any Pα-name as a

Pβ-name, and any Pα-sentence as a Pβ-sentence.

When we are working with ccc forcing notions, the “right” type of iteration to use is finite
support, because the ccc property will be preserved. However, we will soon introduce the idea
of properness, which is a generalization of the ccc. When working with proper forcing notions,
we will be able to relax our iteration method to countable supports, while still preserving this
nice property.

Remark. The two step iteration is a finite or countable support iteration where γ = 2 by the
following. Suppose P ∈ V is a forcing, and Q̇ is a P -name such that 1P  Q̇ is a forcing.
Then let P0 be the trivial forcing, let Q̇0 = P̌ , where P̌ is the canonical P0-name for P , let
P1 := {f : 1 → V |f(0) ∈ dom(Q̇0)}. Now it is clear that P1 is isomorphic as a forcing to P , so
we can take Q̇ as a P1 name, and define Q̇1 := Q̇. Finally, let
P2 := {f : 2 → V |f(0) ∈ dom(Q̇0) ∧ f(1) ∈ Q̇1}. Then 〈Pi, Q̇i : i ≤ 2〉 is a countable support
iteration, and is isomorphic to P ∗ Q̇.

Lemma 4.2.1. (Properties of Countable Support Iterations)
If 〈Pα, Q̇α : α ≤ γ〉 is a countable support iteration, and α ≤ β ≤ γ then the following hold.

1. ∀p ∈ Pβ ((p � α) ∈ Pα)

2. ∀p ∈ Pβ ((p � α) ≤Pβ p)

3. ∀p, q ∈ Pβ (p ≤Pβ q → (p � α) ≤Pα (q � α))

4. ∀p, q ∈ Pβ ((p � α) ⊥Pα (q � α)→ p ⊥Pβ q)

5. ∀p ∈ Pα∀q ∈ Pβ (p ≤Pα (q � α)↔ p ≤Pβ q)

6. If Gβ is a Pβ generic filter, then Gα := {p � α : p ∈ Gβ} is a Pα-generic filter
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Proper Forcing

As we saw earlier, the countable chain condition is a very nice property for a forcing notion
to have, because with it, the forcing will preserve all cardinals and cofinalities. Unfortunately,
when iterating, we have to use finite supports if we hope to preserve this property. Fortunately
however, there is a more general property, namely properness, that we shall introduce in this
chapter. Properness was introduced by Saharon Shelah, and was designed specifically to not
collapse ℵ1. If we are lucky enough to also have the ℵ2-chain condition, we can see that all
cardinals are preserved under this type of forcing. In [13], Shelah uses stationary sets to define
his forcing notion. We however will be starting from a different definition (proved by Shelah on
page 102 of [13] to be equivalent) that uses elementary substructures of Hλ. While everything
here can be found in Shelah’s book, we will be following [1] more closely.

5.1 Generic Conditions and Proper Forcing

Definition. Let P ∈ V be a forcing, let λ be an ordinal, and let M ≺ Hλ such that P ∈ M .
Then q ∈ P is (M,P )-generic if for every dense subset D ⊆ P such that D ∈ M , D ∩M is
predense below q.

Lemma 5.1.1. A condition q is (M,P )-generic if and only if for every D ∈M that is dense in
P , there is a P -name ṗ ∈ V such that q P ṗ ∈ M̌ ∩ Ď ∩ Ġ.

Proof. Suppose first that q is (M,P )-generic, let G be an arbitrary P -generic filter over V such
that q ∈ G, and let D ∈ M be a dense subset of P . Since D ∩M is predense below q and
q ∈ G, we have D ∩M ∩ G 6= ∅, and thus there is some p in this intersection. Since G was
chosen arbitrarily to contain q, by the maximality principal, there is some ṗ ∈ V such that
q P ṗ ∈ M̌ ∩ Ď ∩ Ġ.
For the other direction, let q ∈ P , and suppose that the right hand statement is true, then let
D ∈ M be a dense subset of P , and let ṗ be the condition such that q P ṗ ∈ M̌ ∩ Ď ∩ Ġ,
let q′ ≤ q, and let G be a P -generic filter over V such that q′ ∈ G. Then by the assumption,
ṗG ∈ M ∩D ∩ G. Since G is a filter, there is some q′′ ∈ G that extends both ṗG and q′. Thus
by definition D ∩M is predense below q.

Lemma 5.1.2. A condition q is (M,P )-generic if and only if q M [Ġ] ∩Ord = M ∩Ord.

Proof. Please see [13] chapter III, lemma 2.6.

Definition. A forcing is called proper if for every λ > 2card(P ) and every countable M ≺ Hλ

with P ∈M , every condition in P ∩M has an (M,P )-generic extension.
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5.2 Two Step Iteration of Proper Forcing Notions

Our first goal is to show that properness is preserved in two-step iterations of proper forcing
notions. We are actually going to prove a much stronger condition below, but first we need a
lemma help us find generic conditions in our two-step iteration.

Lemma 5.2.1. Let P ∗ Q̇ be a two step iteration of forcing notions, and let λ be sufficiently
large with M ≺ Hλ, and P ∗ Q̇ ∈ M . Further let p ∈ P be an (M,P )-generic and q̇ ∈ V be a
P -name such that p  “q̇ is (M [Ġp], Q̇)-generic”. Then (p, q̇) is (M,P ∗ Q̇)-generic.

Proof. Suppose p and q are as in the statement. Then let G be a (P ∗ Q̇)-generic filter over V ,
let x ∈M [G] ∩Ord = M [G1][G1] ∩Ord, and let ẋ ∈M [G1] be a Q̇G1 name such that ẋG2 = x.
Since p ∈ G1, q̇G1 M [Ǧ1][Ġ2]∩Ord = M [Ǧ1]∩Ord, so x = ẋG2 ∈M [G1]∩Ord. Thus there is
a P -name ẍ ∈ M such that ẍG1 = ẋG2 = x ∈ M [G1] ∩Ord. Since p is (M,P )-generic, we have
x = ẍG1 ∈ M ∩ Ord. Since x was arbitrary, we have M [G] ∩ Ord = M ∩ Ord. Since the only
restriction we had on G was that (p, q̇) ∈ G, we see now that (p, q̇)  M [Ġ] ∩Ord = M ∩Ord,
so (p, q̇) is (P ∗ Q̇)-generic.

Lemma 5.2.2. (The Two-Step Properness Extension Lemma)
Let P be a proper forcing over V , ĠP be the canonical name for a P -generic filter over V , and
Q̇ be a P -name such that

1P P “ Q̇ is a proper forcing over V [ĠP ]”

Let λ be sufficiently large, and let M ≺ Hλ be countable such that P ∗ Q̇ ∈ M . Assume that
p ∈ P is an (M,P )-generic condition, and ṙ ∈ V is a P -name such that

p P “ṙ ∈M ∩ (P ∗ Q̇) and π1(ṙ) ∈ ĠP ”

Then there is some P -name, q̇ ∈ V such that (p, q̇) is (M,P ∗ Q̇)-generic, and

(p, q̇) (P∗Q̇) ṙ ∈ Ġ

(Where Ġ is the canonical P ∗ Q̇ name for a (P ∗ Q̇)-generic filter over V ).

Proof. Let GP be some (V, P )-generic filter such that p ∈ GP . Then ṙGP ∈M∩(P ∗Q̇), and thus
has the form ṙGP = (r0, ṙ1) and π1(ṙGP ) = r0 ∈ Q̇GP . Now ṙ1 is a P -name for a condition in Q̇,
and can thus be interpreted with GP , giving us ṙ1

GP ∈ Q̇GP . Since Q̇GP is proper over V [GP ],
and ṙ1

GP ∈ Q̇GP ∩M [GP ] (ṙ1 ∈ M because (r0, ṙ1) ∈ M), there is a (M [GP ], Q̇GP )-generic
extension q ∈ Q̇GP of ṙGP1 . Since GP was an arbitrary (V, P )-generic filter containing p, by the
maximality principal we can find a P -name q̇ of q such that:

p P “q̇ is an (M [ĠP ], Q̇)-generic extension of π2(ṙ)”

By lemma 5.2.1, we already have that (p, q̇) is (M,P ∗ Q̇)-generic, so it is left to show that

(p, q̇) (P∗Q̇) ṙ ∈ Ġ

First remember that ṙ is a P -name, and p P ṙ ∈ (P ∗ Q̇), so in particular, if we think of ṙ
as a P ∗ Q̇ name, we have (p, q̇) (P∗Q̇) ṙ ∈ (P ∗ Q̇). Now suppose (p′, q̇′) is some extension

of (p, q̇) that decides ṙ to be some (r0, ṙ1) ∈ P ∗ Q̇, that is (p′, q̇′) (P∗Q̇) ṙ = (r0, ṙ1)̌. Then

p′ P π1(ṙ) ∈ ĠP , and thus since P is separative p′ ≤ r0. Since p P “q̇ extends π2(ṙ)”, and we
have p′ P “q̇′ extends q̇ and q̇ extends ṙ1”, so (p′, q̇′) ≤ (r0, ṙ1) and thus (p′, q̇′) (P∗Q̇) ṙ ∈ Ġ.

Since this is true for any extension of (p, q̇) that identifies ṙ, we have the desired result that
(p, q̇) (P∗Q̇) ṙ ∈ Ġ.
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It follows almost directly that properness is preserved in a two step iteration.

Theorem 5.2.3. If P is a proper forcing over V , ĠP is the canonical name for a P -generic
filter over V , and Q̇ is a P -name such that

1P P “ Q̇ is a proper forcing over V [ĠP ]”

Then P ∗ Q̇ is a proper forcing over V .

Proof. Let λ be sufficiently large, and M ≺ Hλ be a countable submodel such that P ∗ Q̇ ∈M ,
and let (p, q̇) ∈M ∩ P ∗ Q̇. Then p ∈M ∩ P , and P is proper over V , so there is some (M,P )-
generic extension p′ ∈ P of p. Now let ṙ be the canonical P -name for the condition (p, q̇). It is
clear that

p′ P “ṙ ∈M ∩ P ∗ Q̇ and π1(ṙ) ∈ ĠP ”

So by the previous lemma, there is some P -name q̇′ such that (p′, q̇′) is (M,P ∗ Q̇)-generic,
and (p′, q̇′) (P∗Q̇) ṙ ∈ Ġ. Since ṙ was the canonical P -name of (p, q̇), we actually have

(p′, q̇′) (P∗Q̇) (p, q̇)̌ ∈ Ġ. Since P ∗ Q̇ is separative, (p′, q̇′) ≤ (p, q̇), and thus P ∗ Q̇ is proper
over V .

5.3 Countable Support Iteration of Proper Forcing Notions

We now show that properness is preserved in countable support iterations. Again, we prove first
a much stronger condition similar to the one from the two-step version.

Definition. A countable support iteration 〈Pα, Q̇α : α ≤ γ〉 is an iteration of proper forcing
notions if for every α < γ, 1Pα Pα “Q̇α is a proper forcing”.

Lemma 5.3.1. (The Properness Extension Lemma)
Let 〈Pα, Q̇α : α ≤ γ〉 be a countable support iteration of proper forcing notions, and for each
α, let Ġα be the canonical Pα-name for a Pα-generic filter over V . Let λ be sufficiently large,
and M ≺ Hλ be countable with γ, Pγ , 〈Pα, Q̇α : α ≤ γ〉 ∈ M . Let γ0 ∈ γ ∩M , and assume that
pγ0 ∈ Pγ0 is an (M,Pγ0)-generic condition and ṙ ∈ V is a Pγ0-name such that:

pγ0 Pγ0 “ṙ ∈M ∩ Pγ and ṙ � γ0 ∈ Ġγ0”

Then there is some (M,Pγ)-generic condition p such that p � γ0 = pγ0, and

p Pγ ṙ ∈ Ġγ

Proof. We prove this lemma by induction on γ. Assume first that γ is a successor. If γ0 +1 = γ,
then we have Pγ = Pγ0 ∗ Q̇γ0 , and this case is handled by lemma 5.2.2.

Assume then that γ0 < γ′ < γ′ + 1 = γ. By induction, the statement of the lemma holds for γ′.
So since

pγ0 Pγ0 “ṙ ∈M ∩ Pγ and ṙ � γ0 ∈ Ġγ0”

We have by definition

pγ0 Pγ0 “ṙ � γ′ ∈M ∩ Pγ′ and (ṙ � γ′) � γ0 ∈ Ġγ0”

Then by the statement of the lemma applied to γ′ and ṙ � γ′, there is some (M,Pγ′)-generic
condition p′ such that p′ � γ0 = pγ0 and

p′ Pγ′ “ṙ ∈M ∩ Pγ and ṙ � γ′ ∈ Ġγ′”



5. Proper Forcing 33

We have now reduced this case to the previous one where γ0 + 1 = γ.

So we are left with the case that γ is a limit ordinal. In this case, we start by choosing an
increasing sequence 〈γi : i ∈ ω〉 ∈ V that is cofinal in γ ∩M , where γ0 is the same γ0 given in
the statement of the lemma. This is of course possible, since M is countable. Let us enumerate
all of the dense sets of Pγ that are in M , say as 〈Di : i ∈ ω〉. We will now define by induction
a sequence of Pγn-names ṙn, and a sequence of conditions pn with each pn ∈ Pγn such that for
each n, pn+1 � n = pn and

pn Pγn “ṙn ∈ Pγ ∩M (5.1)

ṙn � γn ∈ Ġγn (5.2)

ṙn−1 ≤ ṙn (for n > 0) (5.3)

ṙn ∈ Dn−1 (for n > 0)” (5.4)

We start by letting ṙ0 and p0 be the given conditions, ṙ and pγ0 respectively. Then we inductively
define a Pγn-name ṙn+1 and an (M,Pγn)-generic condition pn for each n ∈ ω as follows.

First from ṙn and pn we construct ṙn+1. Assume Gn is a Pγn-generic filter over V such that
pn ∈ Gn, and define rn := ṙGnn . Notice now that (5.1)-(5.4) hold for rn in V [G]. Now in V define

D′n := {p � γn : p ∈ Dn ∧ [(p ≤Pγ rn) ∨ (p � γn ⊥ rn � γn)]}

Notice that D′n ∈ M , as Dn, γn, and rn ∈ M . Now we show that D′n is a dense subset of Pγn .
To do this, let q ∈ Pγn .

1. If q ⊥ (rn � γn) in Pγn , then as an elements of Pγ , q ⊥ rn. By the density of Dn, we can
choose some p ∈ Dn with p ≤Pγ q. We have (p � γn) ≤Pγn q, so (p � γn) ⊥ (rn � γn),
(p � γn) ∈ D′n, with (p � γn) ≤Pγn q.

2. If q ‖ (rn � γn) in Pγn , then as elements of Pγ , q ‖ rn. So we can find a condition in Pγ
stronger than both q and rn, and by the density of Dn, we can find a p ∈ D stronger than
this condition. Since p ≤Pγ rn, (p � γn) ∈ D′n and we already know (p � γn) ≤ q.

Now pn is (M,Pγn)-generic, and D′n ∈M is a dense subset of Pγn , so D′n ∩M is predense below
pn. Since pn ∈ Gn, and Gn is a generic filter, we know that Gn ∩D′n ∩M 6= ∅. So take some
x in this intersection, and notice by the definition of D′ that there is some r ∈ Dn such that
r � γn = x, in particular, Hλ |= ∃r ∈ Dn(r � γn = x). Since Dn, γn, and x are all elements of
M , by the elementarity of M this existential statement holds in M as well, so we can find some
rn+1 ∈ M such that rn+1 ∈ Dn and (rn+1 � γn) = x ∈ Gn. Since rn+1 � γn and rn � γn are
both elements of Gn, they are compatible. Thus by the definition of D′n we actually know that
rn+1 ≤Pγ rn.

Since Gn was an arbitrary Pγn-generic filter containing pn, by the maximality principal, we can
find a Pγn-name ṙn+1 for rn+1 such that

pn Pγn “ṙn+1 ∈ P̌γ ∩ M̌
ṙn+1 � γn ∈ Ġγn
ṙn+1 ≤Pγ ṙn
ṙn+1 ∈ Ďn
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By induction, we can now apply the statement of the lemma to Pγn+1 , γn, pn, and ṙn+1 to
find an (M,Pγn+1)-generic condition pn+1 such that pn+1 � n = pn, (and thus forces the three

statements above about ṙn+1), and forces the stronger statement ṙn+1 � γn+1 ∈ Ġγn+1 .

Since for every m ≤ n we have pn � m = pm, the union
⋃
n∈ω pn is a function with countable

support, and in particular is a forcing condition in Pγ . We now define p :=
⋃
n∈ω pn, and claim

this is the (M,Pγ)-generic condition we are looking for. To prove this, notice first that it follows
from (5.1)-(5.4) that

p Pγ “ṙn ∈ P̌γ ∩ M̌ (5.5)

ṙn � γn ∈ Ġγn (5.6)

ṙn+1 ≤Pγ ṙn (5.7)

ṙn+1 ∈ Dn” (5.8)

The condition p is (M,Pγ)-generic because if D is a dense subset of Pγ in M , then there is some
n such that D = Dn. Then with (5.8) and lemma 5.1.1 p is (M,Pγ)-generic.

It follows from (5.7) that if n ≤ m then:

p  ṙm ≤Pγ ṙn

Together with (5.6) this yields for n ≤ m:

p  ṙn � γm ∈ Ġγm

Remembering that ṙ0 = ṙ, in particular we have for all m ∈ ω

p  ṙ � γm ∈ Ġγm (5.9)

Suppose now that p′ extends p and identifies ṙ to be some r ∈ Pγ . Then p′  (ř � γm) ∈ Ġγm
for every m ∈ ω, so since the forcing notions are separative, p′ ≤ (r � γm) for every m. We also
have p′  ř ∈M and thus since the domain of r is countable, it is a subset of M . In particular
dom(r) ⊆ γ ∩M . This fact together with (5.9), gives us that p′ ≤ r, so p′  r ∈ Ġγ . Since this
is true for every p′ extending p that identifies ṙ, we have found an (M,Pγ)-generic condition p
such that p � γ0 = pγ0 and p  ṙ ∈ Ġγ .

Theorem 5.3.2. If 〈Pα, Q̇α : α ≤ γ〉 is a countable support iteration of proper forcing notions,
then Pγ is a proper forcing.

Proof. let λ be sufficiently large, M ≺ Hλ be countable such that Pγ , γ, 〈Pα, Q̇α : α ≤ γ〉 ∈ M ,
and let r ∈M ∩Pγ . Then let γ0 = 0, let ṙ be the canonical name for r over the forcing P0 = {∅},
and let p0 = ∅. Notice that p0 is (M,P0)-generic, and p0 P0 “ṙ � 0 ∈ Ġ0 and ṙ ∈ M̌ ∩ P̌γ . Then
by the previous lemma, there is some (M,Pγ)-generic condition p such that p Pγ ṙ ∈ Ġγ . Since
pγ is separative it is clear now that p ≤ r, so Pγ is a proper forcing.

5.4 Dominating Reals in Iterated Proper Forcing

We get some other really nice properties from the countable support iteration of proper forcing
notions. The first important one happens at limit steps of uncountable cofinalities. This lemma
was adapted to match our style from lemma 1.5.7 in [3].
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Lemma 5.4.1. Let 〈Pα, Q̇α : α ≤ γ〉 be a countable support iteration of proper forcing notions,
and let γ be a limit ordinal of uncountable cofinality, then

1Pγ Pγ ω
ω ∩ V [Ġγ ] =

⋃
α<γ

(ωω ∩ V [Ġα])

(i.e. no new reals are added at the limit steps of uncountable cofinality.)

Proof. Let ḟ ∈ V be a Pγ name for a function in ωω. By lemma 2.4.4 we can assume ḟ is a
’nice’ name in the sense that if x ∈ ḟ then x has the form 〈ǎ, p〉 for some a ∈ ω × ω, and some
p ∈ Pγ . Now for each m ∈ ω define Dm := {p ∈ Pγ : “p decides ḟ(m̌)”}, and for γ sufficiently
large, let M ≺ Hλ be a countable submodel with {Dm : m ∈ ω}, ḟ , Pγ , etc ∈ M . Since M
is countable, and the cofinality of γ is uncountable, α := γ ∩M is strictly less than γ, and
f̂ := ḟ ∩M is a Pα-name. Now let p ∈ Pγ , and by the properness of Pγ , let q ≤ p be a (M,Pγ)-

generic condition. We claim that q  f̂ = ḟ . It is clear that q  f̂ ⊆ ḟ , because as names f̂ ⊆ ḟ .
So let G be a generic filter on Pγ such that q ∈ G, and suppose 〈m,n〉 ∈ ḟG. We know by the
genericity of q that Dm ∩M is predense below q, and thus there is some q′ ∈ Dm ∩M ∩ G.
Then since q′ decides ḟ(m̌), and ḟ is a nice name, we know 〈〈m,n〉̌, q′〉 ∈ ḟ . Since q′ ∈ M ,
〈〈m,n〉̌, q′〉 ∈ f̂ , and therefore 〈m,n〉 ∈ f̂G.

It would be nice if we could get that property for all limit steps, but unfortunatly we needed
the uncountable cofinality to restrict the domain of the name of the new real. We are able to
say something about the reals that we add at limits of countable cofinality, providing we have
enough information about the steps below it. We will adapt theorem 6.1.18 from [3] to our style.

Lemma 5.4.2. Let 〈Pα, Q̇α : α < γ〉 be a countable support iteration of proper forcing notions,
and let γ be a limit ordinal. Suppose that Pα does not add a dominating real for all α < γ. Then
Pγ does not add a dominating real.

Proof. If γ has uncountable cofinality, then by the previous lemma, no new real is added in the γ
step of the iteration, so in particular, no new dominating real is added. Suppose now instead that
the cofinality of γ is ℵ0, and let 〈γn : n ∈ ω〉 be a cofinal sequence of ordinals in γ with γ0 = 0.
Let ġ be a Pγ name for a real, and for each m ∈ ω let Dm := {p ∈ Pγ : “p decides ġ � m̌”}.
Now let λ be sufficiently large, and let M ≺ Hλ be a countable submodel with {Dm : m ∈ ω},
{γn : n ∈ ω}, 〈Pα, Q̇α : α < γ〉, Pγ , ġ ∈ M . Now let 〈fi : i ∈ ω〉 be an enumeration of ωω ∩M ,
and define a function f ∈ ωω by f(n) := max{fi(n) + 1 : i ≤ n}. Let ṗ0 ∈ Pγ be the canonical
P0-name for some forcing condition p0 ∈ Pγ , and let q0 = ∅. By induction we will find a q ≤ p0

such that q  f̌ �∗ ġ.

Suppose we have already defined a Pγn-name ṗn and qn ∈ Pγn such that there is some Pγn-name
ṁ for a natural number such that qn Pγn ň ≤ ṁ, (for n = 0, let ṁ = 0) and

qn  “ṗn ∈ P̌γ ∩ M̌
ṗn � γn ∈ Ġn
ṗn ∈ Dṁ

ṗn ≤ ṗn−1 (for n > 0)”

Then define pn,0 := Pγn , and for each m ∈ ω, choose a Pγn-name (just like in the properness
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extension lemma) such that for each m

qn  “ṗn,m ∈ P̌γ ∩ M̌
ṗn,m � γn ∈ Ġn
ṗn,m+1 ≤ ṗn,m
ṗn,m ∈ Dm”

Then let Gn be an arbitrary generic filter on Pγn such that qn ∈ Gn, and in M [Gn] define
gn ∈ ωω by gn(m) := l if and only if ṗGnn,m+1  ġ(m̌) = ľ, and since gn ∈M [Gn] we can choose a
Pγn-name ġn ∈ M such that for each m, qn Pγn (ṗm,n Pγ ġn(m̌) = ġ(m̌)). Then since ġn is a
Pγn name for a real, by the assumption of the lemma, it is not a dominating real. So specifically
Hλ |= ∃ḣ ∈ ωω (1Pγn Pγn ḣ �

∗ ġn) where ḣ is the Pγn-name for a real in V [Gn]. Since M is

an elementary submodel of Hλ, we can find such an ḣ in M . Since ḣ is a name for a real, and
q Pγn ḣ ∈ M̌ , there is some Pγn-name ṅ such that qn Pγn ḣ = fṅ (from our enumeration of

the reals in M). The result is that qn Pγn ∀m ≥ ṅ (f̌(m) > ḣ(m)). In particular, there is a
Pγn-name ṁ for a natural number such that

qn Pγn “ň, ṅ ≤ ṁ
ġn(ṁ) < ḣ(ṁ) < f̌(ṁ)”

So in particular:

qn Pγn “f̌ �∗ṅ ġn”

Now define ṗn+1 := ṗn,ṁ, and by the properness extension lemma, choose a (M,Pγn+1)-generic
qn+1 such that qn+1 � n = qn, and

qn+1 Pγn “ṗn+1 ∈ P̌γ ∩ M̌
ṗn+1 � γn+1 ∈ Ġn+1

ṗn+1 ∈ Dṁ

ṗn+1 ≤ ṗn”

Then as before we define q :=
⋃
n∈ω qn and claim that q  f̌ �∗ ġ. Just as in the properness

extension lemma, we get that for every n, q Pγ ṗn ∈ Ġγ . Along with the fact that for every n,
there is a Pγn name ṁ for a natural number greater than n such that q  (ṗn  ġn(ṁ) = ġ(ṁ)),
and q  ġn(ṁ) < ḣ(ṁ) < f̌(ṁ), we have that for each n ∈ ω, q  f̌ �∗ň ġ. Thus q  f̌ �∗ ġ, the
desired result.
Finally, we would like to point out one last result that we will not prove here.

Theorem 5.4.3. Let 〈Pα, Q̇α : α ≤ γ〉 be a countable support iteration of length γ ≤ ω2 of
proper forcings of size at most ℵ1. Then Pγ satisfies the ℵ2-chain condition.

Proof. See section 2.2 in [1].

5.5 An Application of Iterated Proper Forcing

With all of these tools built up, it would be a shame not to give an application. We demonstrate
here model 7.5.1 from [3]. We will construct this model from forcing notions we introduced in the
Generic Reals chapter, and will compute enough values on the corresponding Cichoń diagram,
to know all 10 of them (with the help of the inequalities mentioned in the introduction of the
diagram).
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Example 5.5.1. Let 〈Pα, Q̇α : α < ω2〉 be the countable support iteration where:

1. If α is even, Q̇α = ḂC , a Pα-name for the Solovay forcing.

2. If α is odd, Q̇α = Ċ2, a Pα-name for the Cohen forcing.

From the previous lemma, this model has the ℵ2-chain condition, so cardinals greater than and
equal to ℵ2 are preserved. We also know that ℵ1 is preserved because the is a proper forcing.
For the following lemmas, let Gω2 be a Pω2-generic filter over V .

Lemma 5.5.2. In V [Gω2 ] we have cov(M) = cov(N ) = ℵ2.

Proof. Let 〈Aγ : γ < λ〉 where λ < ω2 be a sequence of meager subsets of R in V [Gω2 ]. Now
since each Aγ is meager there is a Gδ set, Bγ , that can be expressed as the intersection of
countably many dense open sets such that Aγ ∩ Bγ = ∅. Instead of being the actual set, let
Bγ be a Gδ-code associated with the given Gδ set. Since Gδ-codes are countable collections of
countable collections of pairs of rational numbers, we can see that the set of all Gδ-codes in V is
in bijection with the subsets of ω in V . Since no new reals, and in particular no new subsets of
ω are added in the limit step Pω2 , we have for each γ < λ, an αγ < ω2 such that Bγ ∈ V [Gαγ ].
Define α := sup{αγ : γ < λ}, and notice that since λ and each of the αγ ’s are less than ω2,
and ω2 is regular, α < ω2. This means all of these Gδ-codes occur already in V [Gα]. Now let

β =

{
α if α is odd

α+ 1 if α is even
, then fβ :=

⋃
p∈Gβ+1

p(β)Gβ is a Cohen real generic over V [Gβ], and

is thus an element of each set B
V [Gβ+1]
γ ⊆ BV [Gω2 ]

γ . In particular fβ /∈
⋃
γ<λAγ , so 〈Aγ : γ < λ〉

can not be a cover of RV [Gω2 ], and thus cov(M) ≥ ℵ2.

To show that cov(N ) = ℵ2, we start with a sequence of measure zero sets 〈Aγ : γ < λ〉
where λ < ω2, and for each choose a Gδ-code Bγ ∈ V [Gω2 ] for a null set in V [Gω2 such that

Aγ ⊆ B
V [Gω2 ]
γ . Choose as above an α < ω2 such that all of these Gδ codes occur in V [Gα]. This

time let β =

{
α+ 1 if α is odd

α if α is even
, and

aβ :=
⋂

q∈Gβ+1

{
pV [Gβ+1] : p ∈ V [Gβ] is an F -code ∧ q(β)Gβ = pV [Gβ ]

}
Then aβ is a random real generic over V [Gβ], and thus is not an element of any B

V [Gβ+1]
γ , so is

also not an element of any B
V [Gω2 ]
γ . In particular rβ /∈

⋃
γ<λAγ , so 〈Aγ : γ < λ〉 can not be a

cover of RV [Gω2 ], and thus cov(N ) ≥ ℵ2.

Now we would like to show that in this model, the bounding number is still ℵ1. To do this, we
need first a basic lemma about bounding numbers and forcing notions.

Lemma 5.5.3. Suppose P ∈ V is a forcing of size less than b. Then for every function
f ∈ ωω ∩ V [G], there exists a function gf ∈ V such that if h ∈ V and h ≤∗ f then h ≤∗ gf

Proof. Let ḟ ∈ V be a P -name for f , then for each p ∈ P define the function fp by

fp(n) := min{k : ∃q ≤ p (q P ḟ(ň) = ǩ)}

Now since {fp : p ∈ P} has cardinality less than b, we can find a function gf that dominates
this family. Notice now that if p P h ≤∗ ḟ , then h ≤∗ fp ≤∗ gf .
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Lemma 5.5.4. If CH holds in V , then in V [Gω2 ] we have b = ℵ1.

Proof. Since we have assumed CH in V , cardV (ωω ∩ V ) = ℵ1, so we will show that ωω ∩ V is
unbounded in V [Gω2 ] by induction, and this is enough to show b = ℵ1. First, for the successor
steps, assume ωω ∩ V is unbounded in V [Gα].

1. If α is even:

V [Gα+1] is a random extension of V [Gα], so given any f ∈ ωω ∩ V [Gα+1], there is some
g ∈ V [Gα] that dominates f . By induction ωω ∩ V is unbounded in V [Gα], so there is
some h ∈ V that is not bounded by g, and thus is not bounded by f .

2. If α is odd:

V [Gα+1] is a Cohen extension of V [Gα], which is generated by the countable Cohen forcing
notion. In particular it is generated by a forcing notion whose cardinality is less than b,
so given any f ∈ ωω ∩ V [Gα+1], there is some g ∈ V [Gα] such that if h ∈ ωω ∩ V [Gα] and
h ≤∗ f , then h ≤∗ g. Since we assumed that ωω ∩V is unbounded in V [Gα], there is some
h ∈ V that is not bounded by g, and thus is not bounded by f .

Now assume that δ is a limit ordinal, and that for all α < δ, ωω∩V is unbounded in V [Gα], then
by lemma 5.4.2 no new dominating real is added at this step, so ωω ∩ V is still unbounded in
V [Gδ].

This model has the following Cichoń diagram

ℵ2 > ℵ2 > ℵ2 > ℵ2 > 2ℵ0 = ℵ2

ℵ1

∧

> ℵ2

∧

ℵ1 > ℵ1

∧

> ℵ1

∧

> ℵ2

∧

> ℵ2

∧
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